Appendix B: Summary of the numerical CGE model

Indices and sets:
Set of regions R: EU, BRA, IDN, ROW
Set of goods g: q, x, y, z
r (alias j): Index for regions

Variables:
S_{gr}: Production of good g in r
S_{FE}^r: Production of FE in r
D_{gr}: Aggregated consumer demand of good g in r
KL_{gr}: Value-added composite for g in r
KLF_{gr}: Value-added composite for FE in r
A_{gr}: Armington aggregate of g in r
IM_{gr}: Import aggregate of g in r
W_r: Consumption composite in r
$CO2_{gr}$: Land use related CO2 emission in region r

p_{gr}: Price of g in r
p_{FE}^r: Price of Primary fossil FE in r
p_{KL}^{gr}: Price of value added for g in r
p_{KLF}^r: Price of value added for FE in r
p_L^r: Price of labor (wage rate) in r
p_K^r: Price of capital (rental rate) in r
p_O^r: Rent for primary energy resource in r
p_A^{gr}: Price of Armington aggregate of g in r
p_{IM}^{gr}: Price of aggregate imports of g in r
p_{CO2}^{gr}: Price of CO2 emission in r
p_{REDD}^{gr} Price of REDD credits in r

p_{W}^{r} Price of consumption composite in r

L_{A}^{gr} Land use endowment in sector g in region r

Parameters:

α^{r} Offset share allowance in region r through REDD credits from BRA

σ_{KLE}^{gr} Substitution between value-added and energy/land g in r

σ_{KL}^{r} Substitution between value-added g in r

σ_{Q}^{r} Substitution between value-added and natural resource in FE in r

σ_{LN}^{r} Substitution between value-added in FE in r

σ_{A}^{gr} Substitution between import and domestic g in r

σ_{IM}^{gr} Substitution between imports from different g in r

σ_{W}^{r} Substitution between goods to consumption

θ_{FE}^{gr} Cost Share of FE in production of g in r

θ_{KL}^{gr} Cost Share of labor in production of g in r

θ_{O}^{r} Cost Share of natural resource in production of FE in r

θ_{LN}^{r} Cost Share of labor in production of FE in r

θ_{A}^{gr} Cost Share of domestic goods g in consumption in r

θ_{IM}^{gr} Cost Share of different imports goods g in consumption in r

p_{LA}^{r} Price of land (rental rate) in r

L_{0}^{gr} Labor endowment in sector g in region r

$L_{0,FE}^{r}$ Labor endowment in FE in region r

K_{0}^{gr} Capital endowment in sector g in region r

$K_{0,FE}^{r}$ Capital endowment in FE in region r

O_{0}^{r} Resource endowment of primary fossil energy in region r

CO_{2}^{r} Fossil related CO$_2$ emission allowance in region r
$CO_2_{gr}^r$ Land use related CO$_2$ emission for good g in region r

$\gamma_{CO_2}^r$ Coefficient for land use CO$_2$ emission in region r

$\kappa_{CO_2}^r$ Coefficient for primary fossil energy of CO$_2$ emission in region r

Zero Profit Conditions

Production of goods except fossil primary energy:

$$\pi_{S}^{gr} = (\theta_{FE}^{gr} p_{FE}^r + \kappa_{CO_2 P_{CO_2}}^{gr} (1-\sigma_{KLE}^r) + \theta_{LA}^{gr} p_{LA}^r (1-\sigma_{KLE}^r) + (1 - \theta_{FE}^{gr} - \theta_{LA}^{gr}) p_{KL}^{gr} (1-\sigma_{KLE}^r) \left(\frac{1}{1-\sigma_{KLE}^r} \right)) \geq p^{gr} \perp S^{gr}$$

Sector specific value-added aggregate for q, x, y and z:

$$\pi_{KL}^{gr} = \left(\theta_{KL}^{gr} p_{KL}^r (1-\sigma_{KL}^r) + (1 - \theta_{KL}^{gr}) p_{K}^{gr} (1-\sigma_{KL}^r) \right) \left(\frac{1}{1-\sigma_{KL}^r} \right) \geq p_{KL}^{gr} \perp KL^{gr}$$

Production of fossil primary energy:

$$\pi_{FE}^r = \left(\theta_{0}^{gr} p_{O}^r (1-\sigma_{O}^r) + (1 - \theta_{Q}^{gr}) p_{K}^{gr} (1-\sigma_{O}^r) \right) \left(\frac{1}{1-\sigma_{O}^r} \right) \geq p_{FE}^r \perp S_{FE}^r$$

Sector specific value-added aggregate for FE:

$$\pi_{KLF}^{r} = \left(\theta_{LN}^{gr} p_{LN}^r (1-\sigma_{LN}^r) + (1 - \theta_{LN}^{gr}) p_{K}^{gr} (1-\sigma_{LN}^r) \right) \left(\frac{1}{1-\sigma_{LN}^r} \right) \geq p_{KLF}^{r} \perp KL^{r}$$

Armington aggregate except for FE:

$$\pi_{A}^{gr} = \left(\theta_{A}^{gr} p^{gr} (1-\sigma_{A}^r) + (1 - \theta_{A}^{gr}) p_{I}^{gr} (1-\sigma_{A}^r) \right) \left(\frac{1}{1-\sigma_{A}^r} \right) \geq p_{A}^{gr} \perp A^{gr}$$

Import Composite except for FE:

$$\pi_{IM}^{gr} = \left(\sum_{j \neq r} \theta_{IM}^{gr} (p_{gj}) (1-\sigma_{IM}^r) \right) \left(\frac{1}{1-\sigma_{IM}^r} \right) \geq p_{IM}^{gr} \perp IM^{gr}$$

Consumption composite:

$$\pi_{W}^{r} = \left(\theta_{w}^{gr} p_{A}^{gr} (1-\sigma_{W}^r) + \theta_{w}^{gr} p_{A}^{gr} (1-\sigma_{W}^r) + \theta_{w}^{gr} p_{A}^{gr} (1-\sigma_{W}^r) + \theta_{w}^{gr} p_{A}^{gr} (1-\sigma_{W}^r) \right) \left(\frac{1}{1-\sigma_{W}^r} \right) \geq p_{W}^{r} \perp W^{r}$$
Market Clearing Conditions

Labor:
\[\sum_g L_0^{gr} + L_{0,FE}^{gr} \geq \sum_g K^{gr}_L \frac{\partial \pi^{KL}}{\partial p_L^r} + K^{KL} \frac{\partial \pi^{KL_foot}}{\partial p_L^r} \perp p_L^r \]

Capital:
\[\sum_g K_0^{gr} + K_{0,FE}^{gr} \geq \sum_g K^{gr}_L \frac{\partial \pi^{KL}}{\partial p_K^r} + K^{KL} \frac{\partial \pi^{KL_foot}}{\partial p_K^r} \perp p_K^r \]

Primary fossil energy resource:
\[O_0^{gr} \geq S^{FE}_{FE} \frac{\partial \pi^{FE}}{\partial p_{O_0}^r} \perp p_{O_0}^r \]

Land use resource:
\[L_A^{gr} \geq S^{gr}_L \frac{\partial \pi^{gr}}{\partial p_{gr}} \perp p_{L_A}^r \]

Value-added except FE:
\[K^{gr}_L \geq S^{gr}_L \frac{\partial \pi^{gr}}{\partial p_{K_L}^r} \perp p_{K_L}^{gr} \]

Value-added FE:
\[K^{KL}_{FE} \geq S^{FE}_{FE} \frac{\partial \pi^{FE}}{\partial p_{K_L}^{KL}} \perp p_{K_{KL}}^{FE} \]

Armington Aggregate:
\[A^{gr} \geq W^{gr} \frac{\partial \pi^{gr}}{\partial p_A^r} \perp p_A^{gr} \]

Import Aggregate:
\[I^{gr}_M \geq A^{gr} \frac{\partial \pi^{gr}_A}{\partial p_{I_M}^{gr}} \perp p_{I_M}^{gr} \]
Supply-demand balance of goods, except FE:

$$S^{gr} \geq A^{gr} \frac{\partial \pi_A^{gr}}{\partial p^{gr}} + \sum_{ j \neq r } I M^{gr_j} \frac{\partial \pi_{IM}^{gr_j}}{\partial p^{gr_j}} \perp p^{gr}$$

Supply-demand balance of FE:

$$S^{r}_{FE} \geq \sum_g S^{gr} \frac{\partial \pi_S^{gr}}{\partial (p^{FE}r + k^{r}_{CO2}p^{gr})} \perp p^{r}_{FE}$$

Demand of goods:

$$D^{gr} \geq A^{gr} \frac{\partial \pi_A^{gr}}{\partial p^{gr}} + I M^{gr} \frac{\partial \pi_{IM}^{gr}}{\partial p^{gr}} \perp D^{gr}$$

Allowed CO$_2$ emission in region, with offset from region BRA:

$$CO2^{r}_{MAX} \geq k^{r}_{CO2}S^{r}_{FE} - \alpha^{r} (CO2^{q}_{0BRA} - CO2^{qBRA}) \perp p^{r}_{CO2}$$

Land use related CO$_2$ emission in region by q:

$$CO2^{q}_{qr} \geq \gamma^{r}_{CO2}LA^{qr} \perp CO2^{qr}$$

Fossil fuel related CO$_2$ emission in region by g:

$$CO2^{q}_{qr} \geq k^{r}_{CO2}S^{r}_{FE} \perp CO2^{qr}$$

CO$_2$ emission offset through REDD credits in region:

$$\alpha^{r}p^{r}_{CO2} \geq p^{BRA}_{REDD} \perp p^{BRA}_{REDD}$$

Consumption by consumers

$$p^{r}_{W^r}W^r \geq p^{r}_L \left(\sum_g L^{gr}_0 + L^{r}_{0,FE} \right) + p^{r}_K \left(\sum_g K_0^{gr} + K^{r}_{0,FE} \right) + p^{r}_0O^{r}_0 + p^{r}_LA^{qr} + p^{r}_{CO2}CO2^{r}_{MAX} - p^{BRA}_{REDD} (CO2^{q}_{0BRA} - CO2^{qBRA}) \perp p^{r}_{W}$$
Elasticities: $\sigma_{KLE}^x, \sigma_{KLE}^y, \sigma_{KLE}^z = 0.5$ $\sigma_{KL} = 1$

Figure B1: Nesting in production of x, y and z

Elasticities: $\sigma_{KLE}^q = 0.1$ $\sigma_{KL} = 1$

Figure B2: Nesting in production of agriculture and forestry good
Elasticities: $\sigma_O = 0.9 \quad \sigma_{KL} = 1$

Figure B3: Nesting in production of fossil fuel energy

Elasticity: $\sigma_w = 0.5$

Figure B4: Nesting in final consumption