
ONLINE APPENDIX

A Intuition behind the methodology used in the paper

A.1 What is the source of exclusion bias?

Exclusion bias is a general phenomenon that is present in all data. For most estimation, it does

not matter. But in autocorrelated regression models, it does. We illustrate the intuition with a

series of simple examples.

We posit that an i.i.d. data generation process y with mean µ and variance s2 produces samples

of yi observations of size N . We denote the mean of yi in sample n as yn and the variance as s2y.

We are interested in the sample correlation between any two observations yi and yj in sample n.

We claim that, on average across sample realizations, the sample correlation between yi and yj is

not 0 even though they are independently distributed. This arises from the definition of sample

correlation. It is similar in nature to the Nickel (1982) bias identified in time-series data.

To illustrate with the simplest example, let N = 2. In this case yn = y1+y2
2 , the sample variance

s2y = (y1−yn)2+(y2−yn)2

2−1 and the sample autocorrelation rn = (y1−yn)(y2−yn)
(y1−yn)2+(y2−yn)2

. By the definition of

yn we have y1 − yn = −(y2 − yn). Let d = y1 − yn. Then:

rn =
−2d2

2d2
= −1

In other words, yi and yj have a non-zero sample correlation even though they are two realizations

of an i.i.d. process. This result generalizes to samples of any size that are divided into pools of size

L = 2 and pool-level fixed effects are included. This is because, with pool fixed effects, each pool

has a distinct mean yn and the formula above applies within each pool.

The idea can be generalized to selection pools of any size. To see this, we first note that the

sample correlation between any observation yi and the average of the remaining pool observations

y−i is negative. This results derives from the definition of the sample average of the pool yn: if

yi > yn, by construction y−i < yn – and vice versa. Hence if we select one observation yj ̸=i from

sample n, then the expected sample correlation between yi and yj will be negative. This is because,

on average, yj < yn if yi > yn and vice versa.
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This can be shown formally as follows. By the definition of a sample mean, we have:

yn =
(L− 1)y−i + yi

L

Let d = yi − yn. Simple algebra yields y−i = yn − d
L−1 . It follows that the covariance between yi

and y−i is simply the covariance between d and − d
L−1 , and the correlation between them is:

rn|yn =
cov(yi, y−i)

sd(yi)sd(y−i)
=

−s2y/(L− 1)

s2y/(L− 1)
= −1

where covariance and variance are measured relative to pool mean yn. This intuition generalizes to

samples of any size that are divided into pools of size L and pool-level fixed effects are included.

The above algebra also demonstrates that the covariance between yi and y−i falls with pool size L

or, more generally, with the size of the sample if pool fixed effects are not included.

As the above examples illustrate, the negative sample correlation between sample observations

within a selection pool arises mechanically because observation yi is omitted or ’excluded’ from

the sample mean of the remaining observations in the pool. If it were not, this negative sample

correlation would disappear. It is for this reason that we call this negative correlation an exclusion

bias.

In the paper we generalize these examples to situations in which groups are formed within each

selection pool and we calculate the plim of the within-group covariance between observations.

A.2 What is the source of reflection bias?

To illustrate the nature of reflection bias, we use a simple example with the size of the group K = 2.

In this setting, it is straightforward to obtain an algebraic formula for the reflection bias. We start

by assuming away exclusion bias to conceptually distinguish the reflection bias from exclusion bias

later on. For simplicity, we assume that errors are homoskedastic and independently distributed.

The latter assumption is far from innocuous since it assumes away the presence of what Manski

(1993) calls correlated effects, that is, correlated errors between individuals belonging to the same

peer group.20 With this assumption, correlation in outcomes between members of the same peer

20As we show later, the model can easily accommodate FEs to capture correlated effects at the level of a cluster
or selection pool.
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group constitutes evidence of endogenous peer effects.

Following Moffit (2001), the estimating equations for any two individuals 1 and 2 in the same

group can be written as:

y1 = β0 + β1y2 + ϵ1

y2 = β0 + β1y1 + ϵ2

where 0 < β1 < 1, E[ϵ1] = E[ϵ2] = 0 and E[ϵ2] = σ2
ϵ . We estimate:

y1 = a+ by2 + v1 (A.1)

by OLS. Note that selection pool fixed effects are omitted. This means that exclusion bias disap-

pears as sample size increases. Using part 2 of Proposition 1, we can show that the magnitude of

the reflection bias is given by the following proposition:

Proposition 3: [Proof in Appendix C.5]: If E[ϵ1ϵ2] = 0 (i.e., there are no correlated effects),

the bias in model (A.1) is given by:

plimN→∞ [̂bOLS ] =
2β1

1 + β2
1

(A.2)

An immediate corollary is that plimN→∞ [̂bOLS ] = 0 iff β1 = 0, implying that the existence of

peer effects can be investigated by testing whether b = 0. Moreover, formula (A.2) can be solved

to recover an estimate of β1 from the naive b̂, yielding:21

β̂1
Ref

=
1−

√
1− b̂2

b̂
(A.3)

This demonstrates that identification can be achieved solely from the assumption of independence

of ϵ1 and ϵ2, without the need for instrument.

21The other root can be ignored because it is always > 1 and peer effects in a linear-in-means model cannot exceed
1. Furthermore, in the simple model presented here, the maximum value that b̂ can take is 1, which arises when
y1 and y2 are perfectly positively correlated. Similarly, the smallest value it can take is -1, which arises if they are
perfectly negatively correlated. It is thus impossible for the absolute value of b̂ to exceed 1, which guarantees the
generality of the formula.
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A.3 How do reflection bias and exclusion bias combine?

Exclusion bias arises when selection pool fixed effects are added to model (A.1) and the size L of

each selection pool is fixed. The estimated model is now y1 = a + by2 + δl + v1, which we rewrite

in deviation from the pool mean to eliminate the fixed effect δl:

ÿ1 = a+ bÿ2 + ϵ̈1 (A.4)

where the notation z̈ikl ≡ z− z̄l where z̄l is the sample mean of z in pool l. By applying Proposition

1, we have:

ρ ≡ plimN→∞SampleCorr(ϵ̈iklϵ̈jkl) = − 1

L− 1
(A.5)

Using this result, we can show that the size of the combined reflection and exclusion bias is as

follows:

Proposition 4: [Proof in Appendix C.6] The bias in model (A.4) is given by:

plimN→∞ [̂bFE ] =
2β1 + (1 + β2

1)ρ

1 + β2
1 + 2β1ρ

(A.6)

where ρ = − 1
L−1 .

We can take roots of formula (A.6) to obtain a consistent estimate β̂1
Corr

as: 22

β̂1
Corr

=
1− b̂ρ−

√
1 + b̂2ρ2 − b̂2 − ρ2

b̂− ρ
(A.7)

22There are two roots, but one of them is larger than one and can thus be ignored as a realistic value for β1. Indeed,
in a linear-in-means such as the one here, β1 > 1 implies an explosive solution for the y1 and y2 system of equation,
i.e., y1 = ∞ = y2 – or possibly a corner solution (not modeled here). As long as the researcher observes interior
values of y, we can ignore the β1 > 1 root as plausible value.
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Table A.1: Bias in the estimation of endogenous peer effects - K = 2
K = 2; L = 20; N = 500

(1) (2) (3) (4)

True β1 Predicted

plim(b̂FE)

Monte Carlo average

of b̂FE

Monte Carlo averrage

of b̂Corr

0.00 -0.06 -0.06 0.00

0.01 -0.04 -0.04 0.01

0.02 -0.02 -0.02 0.02

0.03 0.01 0.01 0.03

0.04 0.03 0.03 0.04

0.05 0.05 0.05 0.05

0.06 0.07 0.07 0.06

0.07 0.09 0.09 0.07

0.08 0.11 0.11 0.08

0.09 0.12 0.12 0.09

0.10 0.14 0.14 0.10

Notes: Each row of the Table corresponds to a different Monte Carlo simulation. The first

column gives the value of β1 used to generate each simulated sample. The second column

gives the predicted plim(b̂) from formula (12) in the text. The third column reports the

average value of the estimated b̂ over 100 Monte Carlo replications with N=500, L=20 and

K=2. Pool fixed effects are included in all regressions. Column (4) shows the average of the

corrected b̂ over the same Monte Carlo replications.

We present in Table A.1 calculations based on formulas (A.6) and (A.7) and simulation of b̂FE

over 100 replications to illustrate the magnitude of the reflection and exclusion bias for various values

of β1 and for N = 500, L = 20 and K = 2.23 Column 1 presents the true β1 in the data generation

process. Column 2 shows the plim of b̂FE as predicted using our formula (A.6) and column 3 shows

the simulated value of the same. Column 4 presents the consistent estimate obtained using formula

(A.7). Comparison of columns 2 and 3 in the Table shows clearly that formula (A.6) works very

well in predicting the magnitude of the estimation bias. Moreover, we observe that, when the true

β1 is zero or small, the total predicted bias is dominated by the exclusion bias and is thus negative.

As β1 increases, the reflection bias takes over and leads to coefficient estimates that over-estimate

the true β1. What is striking is that the combination of reflection bias and exclusion bias produces

coefficient estimates that diverge dramatically from the true β1, sometimes under-estimating it and

sometimes over-estimating it. The direction of the bias nonetheless has a clear pattern that can be

summarized as follows:

23We use a large sample size of N × L= 10, 000 to show convergence of the simulation results to the predicted
values. Given that each replication takes a long time for such a large sample, we restrict the number of replications
to 100 in this exercise, which is sufficient to illustrate this point for samples of size N × L= 10, 000.
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1. If β1 = 0, then plimN→∞ [̂bFE ] = ρ < 0 which is the size of the exclusion bias.

2. It is possible for plimN→∞ [̂bFE ] to be negative even though β1 > 0. This arises when ρ is

large in absolute value, for instance if L = 20 and K = 2 as in Table 10.

3. Since the exclusion bias is always negative, b̂FE > 0 can only arise if β1 > 0. It follows that,

in this model, a positive b̂FE unambiguously indicates the presence of peer effects.

Finally, column 4 in Table A.1 illustrates how in this simple case where formulaK = 2 the estimator

derived using formula (A.7) correctly estimates β1.

A.4 Empirical example

Given that K = 2 in the student data in Fafchamps and Mo (2018) - described in Section 2 in

the paper - we can use formulas (A.3), (A.6) and (A.7) to obtain exact predictions about the plim

of b̂FE
1 , b̂Ref

1 and b̂Corr
1 under the null in this empirical application. These predictions are shown

in Table (A.2) and compared to the means of the simulated distributions of β̂FE
1 , β̂Ref

1 and β̂Corr
1

shown in Figure 6 in the main body of this paper. As predicted by (A.6) β̂FE
1 is centered around

-0.059 (considering an average pool size of 18 in this dataset) instead of being centered around the

true β1 = 0. Under the null, formula (A.3), predicts β̂Ref
1 to be centered around -0.029, which is

close to the average of -0.026 obtained by the simulations shown in Figure 6 of the paper. Similarly,

by applying formula (A.7), we expect β̂Corr
1 to be centered on zero. The simulation average of β̂Corr

1

is 0.002. Notwithstanding small differences due to Monte Carlo approximation error, the simulation

results are strikingly similar to the values predicted by our formulas.

Table A.2: Mean β̂FE
1 , β̂Ref

1 , and β̂Corr
1 under H0 : β1 = 0 - Student data

β̂FE
1 β̂Ref

1 β̂Corr
1

Prediction Simulation Prediction Simulation Prediction Simulation
(1) (2) (3) (4) (5) (6)

Mean -0.059 -0.056 -0.029 -0.026 0.000 0.002
Notes: This Table compares for the Fafchamps and Mo (2018) application (where K = 2) the mean

of the simulated β̂FE
1 , β̂Ref

1 and β̂Corr
1 , to the exact predictions made by formulas (A.3), (A.6) and

(A.7)about the plim of β̂FE
1 , β̂Ref

1 and β̂Corr
1 under the null of no endogenous peer effects.
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A.5 Why can’t we allow group-level correlated effects in our model? Or can we?

Drukker and Prucha (2013) have included in a Stata command spreg an ML estimator that allows

for spatial aucorrelation and correlated effects shared by nearby observations. The reason why

the two are separately identified is because spatial autocorrelation spreads through the entire data

while correlated effects are only shared locally between a group of observations and do not, by

themselves, spread outside that group.

To illustrate with a simple example, imagine that the data are placed at regular intervals on a

line, and calculate the sample autocorrelogram. This graph shows the sample correlation between

all pairs of observations that are distance 1 from each other, then the sample correlation between all

pairs that are distance 2 from each other, and so on. If the underlying data generation process only

includes spatial autocorrelation, the spatial autocorrelogram has the usual declining exponential

shape. In contrast, if the DGP only includes local correlated effects, the spatial autocorrelogram

has a spike at distance 1 and zero otherwise. It is this difference in spatial correlation that allows

spreg to estimate both effects. This logic extends to network data, in which case distance is the

network distance between two observations. Autocorrelated effects spread through each network

component while correlated effects remain local.

When the network data takes the form of non-overlapping groups, peer effects remain confined

within that group – which forms its own component. This means that the network autocorrelogram

can only be estimated for network distance 1, i.e., members of the same group. It follows that, in

this case, network autocorrelation (i.e., endogenous peer effects) and correlated effects (i.e., group-

level random effects) cannot be distinguished from each other since they both generate a distance

1 correlation and thus are observationally equivalent.

This reasoning also applies to IV approaches to network autocorrelation that rely on friends-

of-friends for identification (e.g., Bramoulle et al. 2009; Lee et al. 2021): when peer groups are

non-overlapping, there are no friends-of-friends and thus no instruments. The estimation approach

we propose in the paper can, however, be extended to network data with overlapping peer groups,

in which case both network autocorrelation and correlated effects can, in principle, be separately

identified, even without instruments. We believe that the spreg command developed by Drukker

et al. (2013) could similarly be modified to incorporate exclusion bias, a point on which we will be
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communicating shortly with the authors.

B Extensions

B.1 A variable transformation to address exclusion bias in tests of random peer

assignment

One alternative way to circumvent exclusion bias in standard tests of random peer assignment is

to net out the asymptotic exclusion bias using the results from Proposition 1. Specifically, we can

use formula (4.1) – or its extension to cases of varying group and pool sizes that is provided in

Proposition 2 – to transform the dependent variable in model (3.1) so as to obtain a consistent

point estimate of the true β1 under the null. To this effect, we apply OLS to estimate:

ỹiklt = α1ȳ−iklt + δl + ϵiklt (B.1)

where ỹiklt ≡ yiklt − ρȳ−iklt with ρ ≡ plimN→∞[α̂FE
1 ] given by formula (4.1).24 Random peer

assignment is verified by testing whether α̂FE
1 = 0 in model (B.1) using OLS standard errors

clustered at the pool level. As illustrated by simulation results presented in the bottom right panel

of Figure A.1, only when standard errors are clustered by selection pool does the method yield

correct inference. We should point out that regression model (B.1) does not yield a consistent

estimate of α1 when the true α1 ̸= 0 – more about this in Section 5.

24Under the null of α1 = 0, this transformed model is obtained as follows: xiklt =
(
α1 + plimN→∞[α̂FE

1 ]
)
x̄−iklt +

δl + ϵiklt ⇔ xiklt − plimN→∞[α̂FE
1 ]x̄iklt = α1x̄−iklt + δl + ϵiklt. It immediately follows that plimN→∞[α̃FE

1 ] = α1

where α̃FE
1 denotes the estimate obtained from estimating (B.1).
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Figure A.1: Performance of the corrected model with different standard error estimators

Notes: Figure shows for different estimators the simulated performance of a standard t-test to evaluate whether α1 = 0 under
the null hypothesis of random assignment that it is true. The upper two panels show this for the ‘naive’ model (1) for different
standard error estimators: One without clustering at the selection pool level (left) and one with standard errors clustered at
the selection pool level (right). Using model (3) with a corrected dependent variable, the bottom two panels show the results
without (left) and with (right) clustering of standard errors at the selection pool level. The expected rejection rate is a 45
degree line. The actual performance of the test under the null is simulated using 1000 Monte Carlo replications with N=50,
L=20 and K=5. Pool fixed effects are included in each replication. An actual rejection rate above the 45 degree line indicates
over-rejection: the probability of rejecting the null of random assignment is larger than the critical value of the test.

If the model contains regressors wiklt other than those shown in equation (B.1), these regressors

first need to be partialled out. In practice, this means doing the following. First, express yiklt and

ȳ−iklt in deviation from their selection pool mean, i.e., let y̌iklt ≡ yiklt − 1
Lk

∑
jk∈l yjklt and ˇ̄y−iklt ≡

ȳ−iklt− 1
Lk

∑
jk∈l ȳ−jklt. Do the same for the other regressors, i.e., let w̌iklt = wiklt− 1

Lk

∑
jk∈l wjklt.

Second, regress the demeaned y̌iklt on w̌iklt and keep the residuals, which we denote as ûiklt.

Similarly regress ˇ̄y−iklt on w̌iklt and keep the residuals, which we denote as v̂−iklt. We then apply

model (B.1) to the residuals, i.e., we construct ˜̂uiklt ≡ ûiklt − ρv̂−iklt as above and we regress ˜̂uiklt

on v̂−iklt. This yields the correct test for random peer assignment in the presence of additional

regressors.

The above method works when formula (4.1) can be calculated, that is, when peer assignment is

to mutually exclusive groups. It does not apply to peer assignment to partially overlapping groups,

or to a position in a network. In such cases randomization inference can be used instead (e.g.,

Fisher 1925).
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B.2 Avoiding exclusion bias

B.2.1 Exogenous peer effects

When estimating exogenous peer effects, it is possible to eliminate the exclusion bias by using

control variables. To illustrate, we use the peer structure used in the golf tournament studied

by Guryan et al. (2009). Many random pairing experiments, such as the random assignment of

students to rooms or to classes, have a similar structure.

At t + 1 golfers participating to tournament l are assigned to a peer group k with whom they

play throughout the tournament. The performance of golfer i in tournament l is written as yikl,t+1.

The researcher has information on the performance of each golfer i in past golf tournaments. This

information is denoted as yiklt. The researcher wishes to test whether the performance of golfer i

in tournament l depends on the past performance of the golfers i is paired with. The researcher’s

objective is thus to estimate coefficient β1 in a regression of the form:

yikl,t+1 = β0 + β1ȳ−iklt + δl + ϵikl,t+1 (B.2)

where ȳ−iklt denotes the average past performance of i’s assigned peers. A key difference with the

models discussed earlier is that here ȳ−iklt is calculated using the past performance of peers in other

tournaments, before being assigned to be i’s peers. Because of exclusion bias, ȳ−iklt is mechanically

negatively correlated with yiklt due to the presence of pool fixed effects. Since i’s past performance

is correlated with i’s unobserved talent, we expect yiklt to be positively correlated with yikl,t+1.

This generates a negative correlation between ȳ−iklt and the omitted variable yiklt which is part of

the error term. The result is a negative bias for β1 in regression (B.2).

The example suggests an immediate solution: include yiklt as additional regressor to eliminate

the exclusion bias:

yikl,t+1 = β0 + β1ȳ−iklt + β2yiklt + δl + ϵikl,t+1

where yiklt serves as control variable. This is the approach adopted, for instance, in Munshi (2004).

A similar reasoning applies if the researcher wishes to test the influence of the pre-existing

characteristics of peers x̄−iklt on i’s subsequent outcome yikl,t+1 and includes pool fixed effects.25

25As discussed in Proposition 1 Part 3, even if the researcher does not include pool fixed effects, there is still an
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Here too the pre-existing characteristics of peers are negatively correlated with i’s pre-existing

characteristic xiklt. Hence if the researcher fails to control for xiklt and xiklt is positively correlated

with yikl,t+1, then estimating a model of the form:

yikl,t+1 = b0 + b1x̄−iklt + δl + uikl,t+1

will result in a negative exclusion bias.26 This bias can be corrected by including xiklt as control,

as done for instance in Bayer et al. (2009):

yikl,t+1 = b0 + b1x̄−iklt + b2xiklt + δl + uikl,t+1

If the researcher does not have data on yiklt or xiklt, it may be possible to reduce the exclusion

bias by including individual characteristics of i as control variables to soak up some of the omitted

variable bias. How successful this approach can be depends on how strongly individual charac-

teristics predict yiklt or xiklt, as the case may be. Simulations (not reported here) indicate that

the reduction in exclusion bias is sizable when control variables collectively predict much of the

variation in yikl,t+1 (e.g., a correlation of 0.8). The improvement is negligible when the correlation

is small (e.g., 0.2).

B.2.2 Endogenous peer effects

When estimating endogenous peer effects, the use of instrumental variables can – under certain

conditions – eliminate exclusion bias. One case that is particularly relevant in practice is when

the researcher uses the peer average of a variable z to instrument peer effects, but also includes

zi in the regression. To illustrate this formally, let us assume that the researcher has a suitable

instrument z̄−ikl for ȳ−ikl. For instance, z̄−ikl may be the peer group average of a characteristic z

known not to influence yikl, e.g., because this characteristic has been assigned experimentally. If

z̄−ikl is informative about ȳ−ikl, then zikl should be informative about yikl as well. For this reason,

zikl is often included in the estimated regression as well. In this case, the first and second stages of

exclusion bias if the pool size L is small enough.
26If xiklt is negatively correlated with yikl,t+1 then the exclusion bias is positive, i.e., b1 is estimated to be less

negative than it is.
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this 2SLS estimation strategy can be written as follows:

ȳ−ikl = π0 + π1z̄−ikl + π2zikl + δl + vikl (B.3)

yikl = β0 + β1 ˆ̄y−ikl + β2zikl + γl + ϵikl (B.4)

where E(ziklϵikl) = 0, E(ϵikl) = 0 and ˆ̄y−ikl = π̂0 + π̂1z̄−ikl + π̂2zikl + δ̂l is the fitted value from the

first-stage regression.27

Since such 2SLS strategies eliminate the negative exclusion bias, they yield peer effect estimates

that are larger – i.e., more positive – than OLS estimates. This counter-intuitive finding is often

attributed to classical measurement error or some other cause (e.g., Goux and Maurin 2007, Halliday

and Kwak 2012, De Giorgi et al. 2010, de Melo 2014, Brown and Laschever 2012, Helmers and

Patnam 2012, Krishnan and Patnam 2012, Naguib 2012). The removal of the negative exclusion

bias by instrumentation offers an alternative, mechanical explanation.

The above examples serve to illustrate that for 2SLS to effectively eliminate exclusion bias, it

is necessary to control for i’s own value of the instrument zikl in equation (B.3). This condition is

satisfied, for instance, by the estimation strategies employed by Bramoulle et al. (2009), Di Giorgi

et al. (2010) or Lee (2007). Any instrumentation method that fails to do so suffers from exclusion

bias in the same way and for the same reason as OLS.

B.3 Application to time series autoregressive models

The methodological approach proposed in this paper can be applied to autoregressive models other

than those operating on network or group data. We illustrate this with a time series autoregressive

27Expanding the second-stage 2SLS equation and replacing the fitted values by the above expression, it is straight-
forward to show that cov(ˆ̄y−ikl, ϵikl|zikl) = 0 and therefore that β̂2SLS

1 does not suffer from exclusion bias. Indeed
we have:

yikl = β0 + β1 ˆ̄y−ikl + β2zikl + δl + ϵikl

= β0 + β1(π̂0 + π̂1z̄−ikl + π̂2zikl + δ̂l) + β2zikl + δl + ϵikl (B.5)

If yikl and zikl are correlated (i.e., if β2 ̸= 0), we expect z̄−ikl to be mechanically correlated with yikl because

z̄−ikl =

[∑N
K
s=1

∑K
j=1 zjs

]
−zikl

L−1
+ ũikl, where ũikl ≡ z̄−ikl − z̄−il. Since equation (B.5) controls for zikl directly, this

mechanical relationship is prevented from generating an exclusion bias.
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model with fixed effects of the form:

xit = β1xit−1 + δi + ϵit (B.6)

where T is small and N is large. Here T serves the same role as L in peer effect models: it is the

size of the pool from which peers (here, the t− 1 neighbor of t) are drawn. Such models are known

to suffer from bias (Nickell 1981) and various instrumentation strategies have been proposed to

estimate them (e.g., Arellano and Bond 1991, Arellano and Bover 1995, Blundell and Bond 1998).

Using an approach similar to Proposition 1, the asymptotic bias in β1 under the null can easily

be derived as:

Proposition 5: When the true β1 = 0, estimates of β1 in model (B.6) satisfy:

plimN→∞( ˆβFE
1 ) = − 1

T − 1
= ρ (B.7)

See Appendix C.7 for a proof. Interestingly, the limit given by formula (B.7) is the same as that

given by Proposition 1 Part 1 for K = 2 and it is equal to the value of ρ in equation (A.5). Formula

(B.7) shows how large the Nickell bias is at the null: for T = 3, the shortest panel for which

instruments exist, the plim of β̂1 under the null of β1 = 0 is -0.5; for T = 10, the asymptotic bias

under the null is still −0.111.28

The good news is that the different approaches proposed here also work for model (B.6). For

instance, if the researcher is solely interested in testing whether β1 = 0, this is easily achieved by

creating a variable x̃it ≡ xit − ρxit−1 and regressing it on xit−1, as indicated in equation (B.1).

The MM estimation model (5.2) can similarly be used by setting network matrix G to have 1’s

immediately to the left of the diagonal, and 0’s everywhere else, so as to pick the lagged value

of the dependent variable in lieu of the ’average of peers’. Everything we said about inference

applies as well. While this approach allows the estimation of β1 in model (B.6) without recourse to

instruments, it does impose the fairly strict requirement that errors ϵit be i.i.d. within each pool,

which precludes autocorrelated errors.

28See Nickel (1981) and Arellano (2003) for simulations of the bias when β1 ̸= 0. As an aside, there seems to be a
sign error in equation (13) of Nickel’s paper: the last term should have a minus sign instead of a plus sign. If this
error and its impact of subsequent equation (16) are corrected, the formula for the Nickel bias when ρ = 0 is identical
to our equation (B.7), except that the number of time periods T in Nickel (1981) is equal to T − 1 in our notation.

13



B.4 Network data

Until now we have considered situations in which peers form mutually exclusive groups, i.e., such

that if i and j are peers and j and k are peers, then i and k are peers as well. Exclusion bias

also arises when peers form more general networks, i.e., such that i and k need not be peers. To

illustrate this, let us consider the canonical case examined in Section 5.1 and assume that individuals

in selection pool l are randomly assigned peers within that pool. The only difference with Section

5.1 is that we no longer restrict attention to mutually exclusive peer groups but allow links between

peers to take an arbitrary (including directed or undirected) network shape within each pool l.

Partially overlapping groups and mutually exclusive groups of unequal size can be handled in the

same manner.

The approach developed to estimate general group models with uncorrelated errors can be

applied to network data virtually unchanged. Equation (5.2) remains the same. Formally let

gijl = 1 if i and j in selection pool l are peers, and 0 otherwise. We follow convention and set

gii = 0 always. The network matrix in pool l is written Gl = [gijl] and G is a block diagonal matrix

of all Gl matrices.

To estimate network models in levels, we use G directly. If the model we wish to estimate is

linear-in-means, let nil denote the number of peers (or degree) or i. The value of nil typically differs

across individuals. Let us define vector Ĝil as a vector formed by dividing i’s row of Gl by nil, i.e.:

Ĝil = [
gi1l
nil

, ...,
giLl
nil

]

where, as before, L denotes the size of the selection pool.29 The average outcome of i’s peers can

then be written as ĜilYl where Yl is the vector of all outcomes in selection pool l. The peer effect

model that we aim to estimate is:

Yil = βĜilYl + γXil + δĜilXl + λl + ϵil (B.8)

Let’s define Ĝl as the Ll × Ll matrix obtained by stacking all Ĝil in pool l. Similarly define Ĝ as

the block-diagonal matrix of all Ĝl matrices. After expressing Y and X in deviation from their

29To illustrate, let L = 4 and assume that individual 1 has individuals 2 and 4 as peers. Then ĝil = [0, 1
2
, 0, 1

2
].
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pool mean to eliminate λl, the linear-in-means network autoregressive model can thus be written

in matrix form as:

Ÿ = βĜŸ + γẌ + δĜẌ + ϵ̈ (B.9)

As in the previous section, equation (5.2) combined with (A.5), (5.3) and (5.5) can be used

to estimate structural parameters β, γ, δ and σ2. It is intuitively clear that exclusion bias affects

model (B.8) as well: individual i is still excluded from the selection pool of its own peers and, in the

presence of selection pool fixed effects, this continues to generate a mechanical negative correlation

between i’s outcome and that of its peers. The same asymptotic formula is used to substitute for

parameter ρ as before. Pre- and post-multiplying matrix E[ϵ̈ ϵ̈′] by (I − βĜ)−1 in expression (5.2)

picks the relevant off-diagonal elements of B to construct the needed correction for exclusion bias.

Estimation proceeds using the same iterative algorithm as described above.

We illustrate this approach for network data in Table A.3. We generate each adjacency matrix

Ĝl as a Poisson random network with linking probability p. In other words, p is the probability that

a link exists between any two individuals i and j within the same pool. When p = 0.1 and L = 20,

each individual has two peers on average; when p = 0.25 (0.5) each individual has on average 5 (10)

peers, respectively. Table A.3 provides simulation results and shows how our suggested method of

moments correction method is able to correct the estimate of β1 to be close to the true β1.

Table A.3: Correction bias in the estimation of endogenous peer effects - Networks
p = 0.10 p = 0.25

(1) (2) (3) (4) (5) (6)

True β1 β1 = 0.00 β1 = 0.10 β1 = 0.20 β1 = 0.00 β1 = 0.10 β1 = 0.20

Panel A
β̂FE
1 -0.09 0.08 0.26 -0.26 -0.08 0.10

Mean of p-value of β̂FE
1 0.24 0.29 0.00 0.06 0.40 0.36

Proportion of p-value ≤ 0.05 32.2% 26.0% 98.7% 76.2% 14.3% 16.3%

Panel B
β̂Corr
1 - correction for reflection bias + exclusion bias 0.00 0.09 0.19 0.00 0.09 0.19

Mean of p-value of β̂Corr
1 (using permutation method) 0.49 0.04 0.00 0.49 0.18 0.01

Proportion of p-value ≤ 0.05 5.9% 83.9% 100.0% 6.7% 45.4% 95.8%

Notes: Each column corresponds to a different Monte Carlo simulation over 1000 replications. We keep the number of observations in each

sample and selection pool constant at N=50 and L=20, but we vary β1 and the linking probability p. Pool fixed effects are included throughout.

Row 1 and row 2 in Panel A report, respectively, the naive β̂1
FE

and its p-value obtained by regressing Yi on GiY and pool fixed effects. The

third row reports the proportion of times the simulated naive p-value is smaller or equal to 0.05. For column 1 and column 4 this statistic

essentially tells us what is the likelihood to make a type II error, that is, rejecting the null hypothesis when it is in fact true. For columns 2-3 and

columns 5-6 this statistic essentially gives us the statistical power of the test. The first row in Panel B presents the average of β̂1
Corr

correcting

for reflection bias and exclusion bias. The last two rows show the corrected p-value obtained using the permutation method and a statistic

related to the power of the permutation inference method (similarly computed as in Panel A).

The permutation method can be adapted to correct p-values for this case as well. To recall, we
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want to simulate the counterfactual distribution of β̂1 under the null hypothesis of zero peer effects.

In contrast with Section A.3, peers are no longer selected by randomly partitioning individuals

into groups within pools, but rather by randomly assigning peers within pools. In practice, we

keep the network matrices in each selection pool unchanged but we change who is linked to whom.

This approach is known in the statistical sociology literature as Quadratic Assignment Procedure

or QAP and was introduced by Krackhardt (1988).

To implement this approach within pool l, we scramble matrix Gl in the following way. Say the

original ordering individual indices in l is {1, ..., i, ..., j, ..., L}. We generate a random reordering

(k) of these indices, e.g., {j, ..., 1, ..., L, ..., i}. We then reorganize the elements of Gl according to

this reordering to obtain a counter-factual network matrix G
(k)
l . To illustrate, imagine that i has

been mapped into k and j into m. Then element gijl of matrix Gl becomes element gkml in matrix

G
(k)
l . We then use this matrix to compute the average peer variable ĝ

(k)
il yl. For each reordering

(k) we estimate model (B.8) and obtain a counter-factual estimate β̂
(k)
1 corresponding to the null

hypothesis of zero peer effects. We then use the distribution of the β̂
(k)
1 ’s as approximation of the

distribution of β̂1 under the null of zero peer effects.

In Table A.3. we compare the p-values obtained from the naive model and the permutation

approach applied to model (B.8). We find that the performance of the estimation method in the

network case is comparable to what it was in the peer group case.

C Proofs of propositions

The notation is as follows. In a sampled population Ω, each individual i ∈ Ω is randomly assigned

to a group of Ki people. Let Πi ⊆ Ω be the pool of people from which i’s (Ki− 1) peers are drawn

at random. When the pool Πi is the entire sample, Πi = Ω. The pool Πi can also be a subset of

the sample of size Li, with Πi ⊂ Ω. Section C.1 deals with cases with multiple peer selection pools,

i.e., Πi ⊂ Ω (Part 1 of Proposition 1). Section C.2 deals with Πi = Ω (Part 2 of Proposition 1).

Section C.3 discusses the magnitude of the exclusion bias in small samples (Part 3 of Proposition

1). These first three sections focus on cases with a constant pool size L and peer group size K.

Sections C.4, C.5, C.6, and C.7 prove Propositions 2, 3, 4 and 5, respectively.
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C.1 Proof of Proposition 1 part 1: Multiple peer selection pools of fixed size L and

peer groups of fixed size K

Let the sampled population Ω be partitioned into N distinct pools of size L. Individuals in each

pool are partitioned into mutually exclusive groups of size K – which implies that L is an integer

multiple of K. Each individual is assigned a realization of a random variable y with the following

data generating process:

yiklt = δl + ϵiklt (C.1)

where yiklt is the value of y for individual i in group k of pool l at time t, δl is a pool fixed effect,

and ϵiklt is an i.i.d. random variable with mean 0 and variance σ2
ϵ .

To test random peer assignment on these data, the researcher estimates regression (3.1), repro-

duced here:

yiklt = α1ȳ−iklt + δl + ϵiklt (C.2)

where ȳ−iklt is the sample mean of yiklt for individuals other than i who are in the same group k

as i, i.e.:

ȳ−iklt =

[∑K
j=1 yjklt

]
− yiklt

K − 1

In what follows we omit subscript t to improve clarity. Regression (C.2) can be expressed in

deviation from the pool mean so as to eliminate the pool fixed effect δl:

yikl − ȳl = β1(ȳ−ikl − ȳl) + (ϵikl − ϵ̄l) (C.3)

where ȳl is the pool sample mean of yikl, ϵ̄l is the pool sample mean of ϵikl, and we have used the

fact that the pool sample mean of ȳ−ikl is ȳl.

We note that, by construction, ȳl ≡ δl + ϵ̄l. It follows that the demeaned regressor ȳ−ikl − ȳl is

mechanically correlated with the demeaned error term ϵikl− ϵ̄l, resulting in a bias in the estimation

of α1 using equation (C.3). This problem has long been noted in the estimation of autoregressive

models with fixed effects and need not be further discussed here. In that literature, the proposed

solution has been to first-difference regression (C.2) and instrument yikl with lagged values. This

approach does not apply here since peer effects are reflexive.
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In the rest of this section, we derive a formula for the asymptotic bias of α1 for our specific

case of a constant pool and group size. This bias is present even when the true α1 = 0, leading to

incorrect inference when using model (C.3) to test random peer assignment. We start by defining

uikl ≡ ȳ−ikl − ȳ−il where ȳ−il is the sample mean of yikl for individuals other than i who are in the

same pool l as i, i.e.:

ȳ−il ≡

[∑ L
K
s=1

∑K
j=1 yjsl

]
− yikl

L− 1
(C.4)

With this new notation, ȳ−ikl = ȳ−il+uikl and equation (C.3) can be rewritten as:

yikl− ȳl = α1


[∑ L

K
s=1

∑K
j=1 yjsl

]
− yikl

L− 1
+ uikl −


[∑ L

K
s=1

∑K
j=1 yjsl

]
− ȳl

L− 1

− ūl

+ϵikl− ϵ̄l (C.5)

where ūl is the pool sample mean of uikl and is identically 0 by construction. The above equation

thus simplifies to:

yikl − ȳl = α1

(
ȳl − yikl
L− 1

+ uikl − ūl

)
+ ϵikl − ϵ̄l (C.6)

If we define the notation z̈ ≡ z − z̄l , for z = y, ϵ, u, we can further simplify equation (C.3) as:

ÿ = α1

(
−ÿ

L− 1
+ ü

)
+ ϵ̈ (C.7)

from which it is immediately apparent that the regressor used to identify α1 is mechanically corre-

lated with the error term since it contains the dependent variable itself.

Next we apply the standard formula for calculating the plim of the OLS estimator for α1, which

takes the following form :

plimN→∞
(
α̂FE
1

)
= α1 +

cov
(

−ÿ
L−1 + ü, ϵ̈

)
var

(
−ÿ
L−1 + ü

) (C.8)

where α̂FE
1 stands for the fixed effect estimator obtained using regression (C.7). Since α1 = 0 by
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construction, we can write:

plimN→∞
(
α̂FE
1

)
=

cov
(

−ÿ
L−1 , ϵ̈

)
+ cov (ü,ϵ̈)

var
(

−ÿ
L−1

)
+ 2cov

(
−ÿ
L−1 , ü

)
+ var (ü)

(C.9)

With some algebra, equation (C.9) will now enable us to calculate the asymptotic value of the

bias in α̂FE
1 . We start by noting that, since ūl ≡ 0 by construction, we have:

cov (ü, ϵ̈) = E (üϵ̈) = E [(uikl − ul) (ϵikl − ϵl)]

= E (uiklϵikl)− E (uiklϵ̄l) = 0 (C.10)

by definition of the average. Similarly we can write:

var (ü) = var (uikl − ūl) = σ2
u (C.11)

To tackle the three remaining terms in equation (C.9), we start by transforming equation (C.7) to

obtain an expression for − ÿ
L−1 . By simple manipulation of equation (C.7), we obtain:

[
L− 1 + α1

L− 1

]
ÿ = α1ü+ ϵ̈

which leads to:

− ÿ

L− 1
=

−α1ü

L− 1 + α1
− ϵ̈

L− 1 + α1
(C.12)

Next we note that: 
E (ϵiklϵ̄l) =

E(ϵ2ikl)
L = σ2

ϵ
L

var (ϵ̄l) = var
(∑L

i=1 ϵikl
L

)
=

∑L
i=1 var(ϵikl)

L2 = Lσ2
ϵ

L2 = σ2
ϵ
L

(C.13)

from which we obtain

var (ϵ̈) = σ2
ϵ − 2

σ2
ϵ

L
+

σ2
ϵ

L
=

(L− 1)σ2
ϵ

L
(C.14)

Using the facts that E(ϵ̈) = E(ϵikl − ϵ̈l) = 0 and that α1 = 0 by assumption, and combining
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these with equations (C.10), (C.14), and (C.12), we obtain:

cov

(
−ÿ

L− 1
, ϵ̈

)
= E

[[
−ÿ

L− 1
− E

(
−ÿ

L− 1

)]
ϵ̈

]
= E

[
−ϵ̈ϵ̈

L− 1

]
=

−var(ϵ̈)

L− 1
= −σ2

ϵ

L
(C.15)

This gives the value of the first term in the numerator of equation (C.9).

Next, we use equation (C.10) and (C.12) to get the value of the middle term in the denominator

of (C.9):

2cov

(
−ÿ

L− 1
, ü

)
= −2

E(üϵ̈)

L− 1
= 0 (C.16)

For the first term in the denominator of (C.9), we again use equation (C.12) to get:

var

(
−ÿ

L− 1

)
= var

(
− ϵ̈

L− 1

)
=

σ2
ϵ

L(L− 1)
(C.17)

Summarizing these different results, we can write the numerator and denominator of (C.8) as

follows:

cov(
−ÿ

L− 1
+ ü, ϵ̈) = −σ2

ϵ

L
(C.18)

var(
−ÿ

L− 1
+ ü) =

σ2
ϵ

L(L− 1)
+ σ2

u (C.19)
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We now need an expression for σ2
u. Recall that uikl ≡ ȳ−ikl − ȳ−il. Therefore:

σ2
u = V ar(u) = V ar [ȳ−ikl − ȳ−il] = V ar


[∑K

j=1 yjkl

]
− yikl

K − 1
−

[∑ L
K
s=1

∑K
j=1 yjsl

]
− yikl

L− 1


= V ar

(L− 1)
[(∑K

j=1 yjkl

)
− yikl

]
(L− 1)(K − 1)

−
(K − 1)

[(∑K
j=1 yjkl

)
− yik

]
(L− 1)(K − 1)

−
∑ L

K
s ̸=k

∑K
j=1 yjsl

L− 1


= V ar

(L−K)
[(∑K

j=1 yjkl

)
− yikl

]
(L− 1)(K − 1)

−
∑ L

K
s ̸=k

∑K
j=1 yjsl

L− 1


Using var(yikl) = σ2

ϵ and the assumption that yikl is i.i.d., we obtain the following relationship

between σ2
u and σ2

ϵ :

σ2
u =

(L−K)2(K − 1)

(L− 1)2(K − 1)2
σ2
ϵ +

(L−K)

(L− 1)2
σ2
ϵ =

(L−K)

(L− 1)(K − 1)
σ2
ϵ < ϵ2ϵ (C.20)

Substituting this into equation (C.19) the denominator of (C.8) can be written:

var(
−ÿ

L− 1
+ ü) =

σ2
ϵ

L(L− 1)
+

(L−K)

(L− 1)(K − 1)
σ2
ϵ

=
(K − 1) + (L−K)L

L(L− 1)(K − 1)
σ2
ϵ

Combining these results we get:

plimN→∞
(
α̂FE
1

)
=

(−σ2
ϵ
L )

(K−1)+(L−K)L
L(L−1)(K−1) σ2

ϵ

= − (L− 1)(K − 1)

(K − 1) + (L−K)L
(C.21)

which is obviously negative. This proves the first part of Proposition 1.

C.2 Proposition 1 part 2: one single peer selection pool Πi = Ω and N = 1

We now turn to the second part of Proposition 1 when peers are randomized at the level of the

sampled population Ω and there is a single peer selection pool Πi = Ω and N = 1. In this case,

the estimated regression does not include pool fixed effects δl.
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The first part of Proposition 1 (summarized by formula (4.1) and derived in Section C.1) states

that the magnitude of the exclusion bias depends on the size of the peer selection pool L: for a given

peer group size K, a larger pool size is associated with a smaller exclusion bias. From the same

formula (4.1) it immediately follows that as L converges to infinity, the exclusion bias converges to

zero. Formally, if Πi = Ω, then

plimL→∞
(
α̂OLS
1

)
= 0 (C.22)

However, in samples that are small relative to the peer group size K, the magnitude of the exclusion

bias can be large, even when there is only one peer selection pool Πi = Ω.

C.3 Proposition 1 Part 3: Small sample exclusion bias

Formula (C.21) only holds in the limit, that is, for large sample sizes N. The computation of E(α̂FE
1 )

that applies in small sample sizes is not as straightforward, because E

[
samplecov( −ÿ

L−1
+ü,ϵ̈)

samplevar( −ÿ
L−1

+ü)

]
̸=

E[samplecov( −ÿ
L−1

+ü,ϵ̈)]
E[samplevar( −ÿ

L−1
+ü)]

. We can however use a Taylor expansion to sign the bias.

Stuard and Ord (1998) and Elandt-Johnson and Johnson (1980) have shown that for two random

variables R and S, where S either has no mass at 0 (discrete) or has support [0,∞), a Taylor

expansion approximation for E[A/B] is as follows:

E

(
R

S

)
≃ µR

µS
− Cov(R,S)

µ2
S

+
V ar(S)µR

µ3
S

In our application R = SampleCov
(

−ÿ
L−1 + ü, ϵ̈

)
, S = SampleV ar

(
−ÿ
L−1 + ü

)
, µR is the mean of

R and µS is the mean of S. The first term, µR
µS

, is expression (C.21). We know from equation

(C.18) and equation (C.19) that µR < 0 and µS > 0. While an expression for Cov(R,S) is harder

to derive, simulation results indicate that Cov(R,S) < 0. Given that V ar(S) > 0, it follows that:

E
[
α̂FE
1 |L

]
< plimN→∞

[
α̂FE
1

]
(C.23)

a finding that is also confirmed through numerous simulations. Hence, we see that for a given size

of the selection pool L and a given size of the peer group K, the negative exclusion bias shrinks

from below towards its plim as sample size N × L increases.
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C.4 Proof of Proposition 2

The first part of the proof presents a simple formula for aggregating correlation coefficients across

sub-samples. The second part applies the formula to the case where pool size and group size vary

across pools but group size is the same within each pool. Part 3 examines the case where pool size

if fixed but group sizes vary within pools. The last part concludes the proof by combining all cases

within a single formula.

An elegant formula for aggregating correlation coefficients can be found in an early paper by

Dunlap (1937), which we reproduce here. The author posits that the researcher has calculated

correlation coefficients between z and c – and other simple statistics like their mean and variance

– separately for two samples of sizes m and n from the same data generating process. Not having

a computer at his disposal, the researcher wishes to calculate the correlation coefficient of the

combined sample from these already calculated statistics. The solution is the following formula:

rzy =
mszmscmrzmcm +mδm∆m + nsznscnrzncn + nδn∆n√

m(s2zm + δ2m) + n(s2zn + δ2n)
√
m(s2cm +∆2

m) + n(s2cn +∆2
n)

(C.24)

where: the two subsamples are indexed by m and n, respectively; rab denotes the correlation

coefficient between a and b; sa denotes the standard deviation of a; δs denotes the difference

between the sample means of zs and z; and ∆s denotes the difference between the sample means

of cs and c. The formula naturally generalizes to more than two sub-samples. We also note that,

in univariate regressions of c on z, the following relationship holds:

α1 = rzc
sc
sz

To apply the formula to our setting, imagine that we have two sub-samples m and n from the

same data generating process (3.1). Within each sub-sample, pool and group sizes are constant.

But they vary across the two sub-samples. From Proposition 1 we know the plim of α̂1 for each of

the two sub-samples with pool fixed effects is:

plimN→∞[α̂1m] = − (Lm − 1)(Km − 1)

(Lm −Km)Lm + (Km − 1)
(C.25)
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plimN→∞[α̂1n] = − (Ln − 1)(Kn − 1)

(Ln −Kn)Ln + (Kn − 1)
(C.26)

We wish to know the plim of α̂1 for the combined sample. To achieve this, we apply the formula

(C.24). To remove the pool fixed effects, we start by transforming the regression model (3.1) into

its pool de-meaned version (C.7) from the proof of part 1 of Proposition 1, which we reproduce

here for convenience:

ÿs = α1s

(
−ÿs
L− 1

+ üs

)
+ ϵ̈s (C.27)

where s = {m,n}. For notational simplicity, let us define xs ≡ ÿs and let zs ≡ −ÿs
L−1 + üs. Further

let rs stand for the correlation between cs and zs. Since (C.27) is a univariate regression, it follows

that:

plimα̂1s = rs
scs
szs

which establishes a formal link with formula (C.24). By construction, the means of ÿs and üs are

0, and thus the means cs and zs are 0 in each pool, implying that δm = 0 = δn and ∆m = 0 = ∆n.

We thus have:

√
m(s2zm + δ2m) + n(s2zn + δ2n) =

√
ms2zm + ns2zn

=

√∑
m

z2m +
∑
n

z2n = (m+ n)1/2sz

and similarly: √
m(s2cm +∆2

m) + n(s2cn +∆2
n) = (m+ n)1/2sc

where sz and sc are the standard deviations of z and c in the full sample.

Since rzmcm = szm
scm

plimα̂1m and rzncn = szn
scn

plimα̂1n, we can now rewrite formula (C.24) as

follows:

plimα̂1 =
sc
sz

ms2zmplimα̂1m + ns2znplimα̂1n

(m+ n)szsc

=
m

m+ n

s2zm
s2z

plimα̂1m +
n

m+ n

s2zn
s2z

plimα̂1n (C.28)

Equations (C.25) and (C.26) provide values for plimα̂1m and plimα̂1n. A formula for s2zm was
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derived in Proposition 1, part 1:

s2zm ≡ V ar(
−ÿ

Lm − 1
+ ü) =

(Km − 1) + (Lm −Km)Lm

Lm(Lm − 1)(Km − 1)
σ2
ϵ

A similar formula holds for s2zn :

s2zn =
(Kn − 1) + (Ln −Kn)Ln

Ln(Ln − 1)(Kn − 1)
σ2
ϵ

Furthermore we have, by the definition of the variance:

s2z =
m

m+ n
s2zm +

n

m+ n
s2zn

Since the unknown variance term σ2
ϵ cancels out from the

s2zm
s2z

and
s2zn
s2z

ratios, we do not need it

in order to calculate plimα̂1. As in (C.24), the above reasoning naturally generalizes to multiple

sub-samples. This completes the second part of the proof.

We now turn to the case when group size varies within pools. We start by assuming all pools

have the same mix of group sizes. As in part 2, we regard each set of groups of a given size k as a

sub-sample of the whole pool. Let p and q be the number of individual observations in each sub-

sample. Under the null hypothesis of α1 = 0 and the maintained assumption of random assignment

of peers, each sub-sample can be regarded as a representative random sample. Hence the plim

formula (C.8) of Proposition 1 part 1 applies to each of them independently. It follows that the

plim’s of α̂1 are given by the formula from Proposition 1 part 1:

plimN→∞[α̂1p] = − (L− 1)(Kp − 1)

(L−Kp)L+ (Kp − 1)
(C.29)

plimN→∞[α̂1q] = − (L− 1)(Kq − 1)

(L−Kq)L+ (Kq − 1)
(C.30)

We now apply (C.24) to derive the plim of the regression coefficient obtained from pooling the two

sub-samples p and q. As in part 2, δp = 0 = δq and ∆p = 0 = ∆q. Hence equation (C.28) applies

as well:

plimα̂1 =
p

p+ q

s2zp
s2z

plimα̂1p +
q

p+ q

s2zq
s2z

plimα̂1q
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where:

s2zp =
(Kp − 1) + (L−Kp)L

L(L− 1)(Kp − 1)
σ2
ϵ

s2zq =
(Kq − 1) + (L−Kq)L

L(L− 1)(Kq − 1)
σ2
ϵ

s2z =
p

p+ q
s2zp +

p

p+ q
s2zq

This formula holds within each pool.

We can now combine variation in group size within pools with variation in pool sizes to obtain

the following over-arching formula for an arbitrary combination of group and pool sizes. Each

group k of size Kk and pool size Lk is regarded as a distinct subsample with its own plimα̂1 and

s2zk defined as before as:

plimN→∞[α̂1k] = − (Lk − 1)(Kk − 1)

(Lk −Kk)Lk + (Kk − 1)

s2zk =
(Kk − 1) + (Lk −Kk)Lk

Lk(Lk − 1)(Kk − 1)

where, for simplicity, we have dropped σ2
ϵ from the definition of s2zk since it cancels out in the final

formula for plim(α̂1). The definition of s2z generalizes to:

s2z =
∑
k

Kk

M
s2zk

where M ≡
∑

k Kk stands for the total number of observations in the estimation sample. The

generalized formula for the plim of the pooled α̂1 can be written

plimα̂1 =
∑
k

Kk

M

s2zk
s2z

plimα̂1k

This concludes the proof. Since M cancels out, it can be ignored from the Proposition.

Table A.4 and Table A.5 confirm the accuracy of the formula in Proposition 2 through a set of

simulations, particularly for large sample sizes (as expected).
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Table A.4: Simulated exclusion bias with random peer assignment: Varying peer group sizes
Small sample Large sample

(1) (2) (3) (4) (5) (6)

Simulation parameters:
Number of pools (N) 20 20 20 100 100 100

Group size 1 (K1) 2 2 5 2 2 5
Number of groups of size K1 10 10 6 10 10 6

Group size 2 (K2) 5 10 10 5 10 10
Number of groups of size K2 6 3 2 6 3 2

Pool size 50 50 50 50 50 50
Total sample size 1000 1000 1000 5000 5000 5000

Plim of α̂1 from Proposition 2 -0.038 -0.045 -0.115 -0.038 -0.045 -0.115
Mean of α̂s

1 over 1000 simulations -0.040 -0.047 -0.121 -0.037 -0.044 -0.119

Notes: The Table reports simulation results from 1000 Monte Carlo replications for varying peer group

compositions. For example, column (1) considers pools with 10 peer groups of size 2 and 6 peer groups of size 5.

Each simulation considers pools of fixed size L = 50 and considers observations generated with a true α1 = 0. In

each simulated sample s, coefficient α̂s
1 is estimated using fixed effects at the level of the selection pool. Columns

(1)-(3) present results for simulations considering 20 selection pools (1000 observations). Columns (4)-(6) present

results for simulations considering 100 selection pools (5000 observations).

Table A.5: Simulated exclusion bias with random peer assignment: Varying pool sizes
Small sample Large sample

(1) (2) (3) (4) (5) (6)

Simulation parameters:
Pool size 1 (L1) 20 20 50 20 20 50

Number of pools of size L1 10 10 10 40 60 60
Peer group size K1 2 2 10 2 2 10

Pool size 2 (L2) 40 30 20 40 30 20
Number of pools of size L2 30 20 20 120 120 120

Peer group size K2 10 5 2 10 5 2
Total sample size 1400 800 900 5600 4800 5400

Plim of α̂1 from Proposition 2 -0.136 -0.094 -0.070 -0.136 -0.094 -0.071
Mean of α̂s

1 over 1000 simulations -0.136 -0.096 -0.068 -0.137 -0.094 -0.071

Notes: The Table reports simulation results from 1000 Monte Carlo replications for varying peer selection pool

sizes. For example, column (1) considers samples with 10 pools of 10 observations and 30 pools of 40 observations.

The first set of pools contains peer groups all of size 2 and the latter set of pools contains peer groups all of size

10. Each simulation considers observations generated with a true α1 = 0. In each simulated sample s, coefficient

α̂s
1 is estimated using fixed effects at the level of the selection pool. Columns (1)-(3) present results for simulations

considering a relatively small number of observations. Columns (4)-(6) present results for simulations considering

a relatively large number of observations.
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C.5 Proof of Proposition 3

To recall, we have, in each group:

y1 = β0 + β1y2 + ϵ1

y2 = β0 + β1y1 + ϵ2

where 0 < β1 < 1, E[ϵ1] = E[ϵ2] = 0 and E[ϵ2] = σ2
ϵ . Solving this system of simultaneous linear

equations yields the following reduced forms:

y1 =
β0(1 + β1)

1− β2
1

+
ϵ1 + β1ϵ2
1− β2

1

y2 =
β0(1 + β1)

1− β2
1

+
ϵ2 + β1ϵ1
1− β2

1

which shows that y1 and y2 are correlated even if ϵ1 and ϵ2 are not – this is the reflection bias.

None of the ϵ’s from other groups enter this pair of equations since we have assumed no spillovers

across groups. We have E[y1] = E[y2] =
β0(1+β1)
1−β2

1
≡ y. If ϵ1 and ϵ2 are independent from each

other, E[ϵ1ϵ2] = 0 and we can write:

E[(y1 − y)2] = E

[(
ϵ1 + β1ϵ2
1− β2

1

)2
]
= σ2

ϵ

1 + β2
1

(1− β2
1)

2

The covariance between y1 and y2 is given by:

E[(y1 − y)(y2 − y)] = E

[(
ϵ1 + β1ϵ

1− β2
1

)(
ϵ2 + β1ϵ1
1− β2

1

)]
=

2β1σ
2
ϵ

(1− β2
1)

2

where we have again used the assumption that E[ϵ1ϵ2] = 0. The correlation coefficient r between

y1 and y2 is thus:

r =
E[(y1 − y)(y2 − y)]

E[(y1 − y)2]
=

2β1
1 + β2

1

We estimate a model of the form:

y1 = a+ by2 + v1 (C.31)
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Since equation (C.31) is univariate, we have b̂ = r̂
σy1
σy2

= r̂ since σy1 = σy2 . Hence it follows that:

plimN→∞ [̂bOLS ] =
2β1

1 + β2
1

̸= β1

C.6 Proof of Proposition 4

We have shown in Appendix A that, starting from Proposition 1 with K = 2, if we regress ϵ̈ikl on

ϵ̈ikl, the regression coefficient converges to:

ρ ≡ plimN→∞SampleCorr(ϵ̈iklϵ̈jkl) = − 1

L− 1
(C.32)

We can now calculate the covariance between y1 and y2 that results from the combination of both

the reflection bias and the exclusion bias. The variance and covariance of y are now:

plimN→∞[(ÿ1 − ÿ)2] =
σ2
ϵ (1 + β2

1 + 2β1ρ)

(1− β2)2

plimN→∞[(ÿ1 − ÿ)(ÿ2 − ÿ)] =
σ2
ϵ (2β1 + (1 + β2

1)ρ)

(1− β2
1)

2

Equipped with the above results, we can now derive an expression for the combined reflection and

exclusion bias in model (A.1). As before, we use the fact that b̂FE = SampleCov[(ÿ1−ÿ)(ÿ2−ÿ)]

SampleV ar[(ÿ1−ÿ)2]
. Simple

algebra yields:

plimN→∞ [̂bFE ] =
2β1 + (1 + β2

1)ρ

1 + β2
1 + 2β1ρ

(C.33)

C.7 Proof of Proposition 5

Let the sampled population Ω be partitioned into N distinct pools of size T . Observations in each

pool refer to a given individual i and are ordered chronologically by t = {1, ...T}. Each individual

observation is assigned a realization of a random variable x with the following data generating

process:

xit = δi + ϵit (C.34)

where xit is the value of x for individual i at time t, δi is an individual fixed effect, and ϵit is an i.i.d.

random variable with mean 0 and variance σ2
ϵ . Note that here the individual index i corresponds
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to the pool index l in the network data. Under the null, the variance of xit is the same as the

variance of ϵit and the two variables are perfectly correlated.

To test whether variable xit is autoregressive, the researcher estimates the following regression:

xit = β1xit−1 + δi + ϵit (C.35)

where xit−1 is the lagged value of xit. Note that the above regression is estimated using observations

t = {2, ...T} on variable xit while observations t = {1, ..., T − 1} of xit are used for regressor.

Regression ((C.35)) can be expressed in deviation from the individual mean so as to eliminate the

individual fixed effect δl:

xit − x̄i = β1(xit−1 − x̄′i) + (ϵit − ϵ̄i) (C.36)

where x̄i is the pool sample mean of xit, x̄
′
i is the pool sample mean of xit−1, and ϵ̄l is the pool

sample mean of ϵit. Specifically we have:

x̄i =
1

T − 1

T∑
t=2

xit

x̄′i =
1

T − 1

T−1∑
t=1

xit

ϵ̄i =
1

T − 1

T∑
t=2

ϵit

When T is large, x̄i ≃ x′i but when T is small the difference matters. We can rewrite the demeaned

model more concisely as:

ẍit = β1ẍ
′
it + ϵ̈it (C.37)

The plimN→∞(β̂FE
1 ) is thus:

plimN→∞

(
β̂FE
1

)
= β1 +

cov (ẍ′it, ϵ̈it)

var (ẍ′it)
(C.38)

We now derive an expression for cov (ẍ′, ϵ̈); it is not equal to 0, implying a systematic bias in

β̂FE
1 . The basic reason is that observations for ẍ′, ϵ̈ overlap except for observation 1, which only
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appears in ẍ′, and observation T, which only appears in ϵ̈. To simplify the algebra, we use equation

C.35 to replace x with ϵ throughout. We have:

x̄i = δi +
1

T − 1

T∑
t=2

ϵit

x̄′i = δi +
1

T − 1

T−1∑
t=1

ϵit

ϵ̄i =
1

T − 1

T∑
t=2

ϵit

ϵ̄′i =
1

T − 1

T−1∑
t=1

ϵit

ẍ′it = ϵit−1 −
1

T − 1

T−1∑
t=1

ϵit

ϵ̈it = ϵit −
1

T − 1

T∑
t=2

ϵit

By construction we have that E(ϵit) = 0, E(ϵ2it) = σ2
e , and, by independence of the errors,

E(ϵitϵis) = 0 for all s ̸= t. By extension, E(ϵ̈it) = 0 and E(ẍ′it) = 0 as well. We also note that the

variance of a sample means ϵ̄i and ϵ̄′i is simply σ2
e

T−1 . Hence we have:

cov
(
ẍ′it, ϵ̈it

)
= E(ẍ′itϵ̈it) = E(ϵit−1 −

1

T − 1

T−1∑
t=1

ϵit)(ϵit −
1

T − 1

T∑
t=2

ϵit)

= E(ϵit−1ϵit −
ϵit−1

T − 1

T∑
t=2

ϵit −
ϵit

T − 1

T−1∑
t=1

ϵit +
1

(T − 1)2
(
T−1∑
t=1

ϵit)(
T∑
t=2

ϵit))

= −2(T − 2)σ2
e

(T − 1)2
+

T − 2

(T − 1)2
σ2
e = − T − 2

(T − 1)2
σ2
e

The first term on the second line drops out because errors are iid across observations by as-

sumption. Regarding the second term, for observation 2 the cross-term E( ϵit−1

T−1

∑T
t=2 ϵit) = 0 since

ϵi1 does not appear in
∑T

t=2 ϵit. Similarly for observation T in the cross-term E( ϵit
T−1

∑T−1
t=1 ϵit) = 0.

Hence, over T − 1 observations, these cross-terms are equal to σ2
e

T−1 only T − 2 times. Hence, in

expectations, each cross-term is equal to σ2
e

T−1 only T−2
T−1 of the time.
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Turning to the denominator, we have:

var
(
ẍ′it

)
= E(ϵit−1 −

1

T − 1

T−1∑
s=1

ϵis)(ϵit−1 −
1

T − 1

T−1∑
s=1

ϵis)

= E(ϵ2it−1 − 2
ϵ2it−1

T − 1
+

1

(T − 1)2
(
T−1∑
s=1

ϵ2is))

=
T − 2

T − 1
σ2
e

It follows that:

plim
(
β̂FE
1

)
= − 1

T − 1
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