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SA1 Proofs

Proof. (Proposition 1)
(a) Under the assumptions imposed it follows that Fy, 7.8, = Fu,y,u; |R;» Which implies that for
d=0,1, Fy, gz, = | H(d,u) < }dFy, gr,(w) = [ 1{i(d,u) < .}dFy, g (u) = Fy,a)r, for
t =0,1. (1) follows by letting = 1 and d = 0, while conditioning the left-hand side of the last
equation on 7; = 0 and R; = 1, and the testable implication in (ii) follows by letting t = d = 0.
Following Hsu, Liu and Shi (2019), we show that the testable restriction is sharp by showing
that if (Yjo,Y:1,T;,R;) satisfy Yjo|T; = O,R; = r 4 Yo|T; = 1,R; = r for r = 0,1, then there exists
(Ui, U;1) such that Y (d) = w/(d,Uy) for some w,(d,.) ford =0,1 and t =0, 1, and (Ujp,U;;) L
T;|R; that generate the observed distributions. By the arbitrariness of U;; and ,, we can let U =
(Yi(0),Yi(1))" and w,(d,U;) = dYi (1) + (1 —d)Y;(0) ford = 0,1, = 0, 1. Note that Y;p = Y;o(0)

since Djp = 0 w.p.1. Now we need to construct a distribution of U; = (U, U/,) that satisfies

U |TlaR F 10(0)7Y10(1)3Y11 (0)>Yll (1)|E7Rl = FYlO(O)leO(l)vyll (0)7Yll (l)lRt

as well as the relevant equalities between potential and observed outcomes. We proceed by first
constructing the unobservable distribution for the respondents. By setting the appropriate potential
outcomes to their observed counterparts, we obtain the following equalities for the distribution of

U; for the treatment and control respondents

Fy 1=0,Ri=1 = Fr(0) Yo (1).¥;1 (0).¥iy (1) T;=0.R=1 = F¥io(1). %11 i1 (1) Y0, =0, Ri=1FY,| ;=0 R;=1

Fyt=1,R=1 = Fy,y(1) %1 (0) ¥ [Yio, =1, R =1 ¥ | T;=1 R =1

By construction, Fy, |7, g,—1 = Fy,|r,—1- Now generating the two distributions above using Fy, (1) y, (0).v;, (1)|Y,,T;,Ri=1
which satisfies Fy, (1) v, v, (1)Yi.T=0.Ri=1 = F¥,o(1),¥1 (0),Ys [V, i=1,Ri=1 Yields U; L T;|R; = 1 and we

can construct the observed outcome distribution (Yjo, Y;;)|R; = 1 from U;|R; = 1.



The result for the attritor subpopulation follows trivially from the above arguments,

Fyim=0.Ri=0 = Fry(1) %1 (0).¥1 (1)|¥i0, ;=0.R=0F Y| =0, R, =0

Fy1=1,Ri=0 = Frp(1) %1 (0),¥i1 (1) Y0, =1 Ri=0 Yo | i=1,R =0

Since Fy7: r,=0 = Fy,y|r;=0 by construction, it remains to generate the two distributions above
using the same Fy, (1) v, (0),v;; (1)|vp.Ri=0- Lhis leads to a distribution of Ui|R; = 0 that is independent
of 7; and that generates the observed outcome distribution Yjo|R; = 0.

(b) Under the given assumptions, it follows that Fy v, 7. r, = Fu,vn |1 = FUy,uy Where the
last equality follows by random assignment. Similar to (a), the above implies that for d = 0,1
and t = 0,1, Fy, ).z, = J i (d,u) < YdFy, g, () = [ (d,u) < }dFy, (1) = Fy,g). ()
follows by letting + = 1, while conditioning the left-hand side of the last equation on 7; = 7 and
R;=1ford =7 and 7 =0, 1, whereas (ii) follows by letting d =t = 0 while conditioningon 7; = 7
andR;=rfort=0,1,r=0,1.

To show that the testable restriction is sharp, it remains to show that if (Y;o,Y;,T;,R;) satis-
fies Yio|T;, R; 4 Yi0(0), then there exists (Ujo,U;;) such that Y (d) = w/(d,Uy) for some p,(d,.)
ford =0,1 and r = 0,1, and (Uj,U;;) L (T;,R;). Similar to (a.ii), we let U; = (¥;(0),Y;(1))
and ;(d,Uy) = dY;(1) + (1 —d)Y;(0). Then Y;o = Y;o(0) by similar arguments as in the above.

Furthermore, Fy, 7. r, = Fy,, by construction and it follows immediately that

Fymi=0.r=1 = Frp(1), ¥4 (1) ¥ Ti=0,Ri =1 FYip»
Fym=1Ri=1 = Friy(1) %1 (0) Yi1 [Yio, =1, Ri=1 FYio»
Fujimi=0.ri=0 = Fig(1),%:(0). 1 (1)¥io Ti=0.R =0 Vi

Fy1=1,8=0 = F,p(1).%41(0),¥y (1)|Yi0, T;=1,Ri=01 V-

Now constructing all of the above distributions using the same Fy, (1), (0).v, (1)|7.r, that satisfies

(1), Yo (1)1¥i0, Ti=0.Ri=1 = Frp(1).%:1(0),¥a Yoo, Ti=1,Ri=1 implies the result. U



Proof. (Proposition 2) The proof is immediate from the proof of Proposition 1 by conditioning all

statements on S;. O

Proof. (Proposition 3) For notational brevity, let U; = (Uj,,U};). We first note that by random

assignment, it follows that

SALD - Fyri0).&(1) = Fuimgom.c0.vn=Fuigov.ea.v) = Fuirio).r1):

As a result,

PoLEy, (R (0),R:(1))=(0,1) T P11FU, (R, (0),R:(1))=(1,1)

(SAL2)  Fyjr—1r=1=

PR =11 = 1) |
P1oFu;|(r;(0).R;(1)=(1,0) T P11EU|(R;(0),Ri (1)) =(1,1
(SAL3)  Fyyp—or—1 = [(&:(0) (2(12 :1|T—0)( (0).Ri(1)=(1.1)

If (i) holds, then Fy, g, 0).r;(1) = Fu;» hence

F _ porFu; + priFy; _FF _ piofy; + prify, _h
VI=LR=L T pRi=1(T;=1) 0 TUIL=0R=1 = pR =11, =0) "

We can similarly show that Fy7. g,—o = Fu;, it follows trivially that U;|T;, R; 4 Ui|R;.
Alternatively, if we assume (ii), R;(0) < R;(1) implies pjg = 0. As a result, P(R; = 0|T; =
1) = P(R; = 0|T; = 0) iff po; = 0. It follows that the terms in (SA1.2) and (SA1.3) both equal
Fy,(Ri(0),R:(1))=(1,1)- Similarly, it follows that Fy,1.—1 r—0 = Fy;j=0.r,=0 = FU;|(R:(0),Ri(1))=(0,0)>
which implies the result.
Finally, suppose (iii) holds, then equal attrition rates imply that pg; = p1o. The exchangeability

restriction implies that FU,~|(R,~(0),R,~(1)):(O,1) = FU,-|(Ri(O),Ri(1)):(1,O)' Hence,

Fy et Rie1 =
Uilli=1.Ri=1 P(Ri=1|T;=1)
P1oFy,|(ri(0 Ri(1))=(1,0 + P11Fy, (R(0),R:(1)= 1,1
(SAL4) _ |(Ri(0) (I)D)Ié-—1|T—0)( OAW=UY _ g - e
{2 [ 2



Similarly, it follows that Fyj,7.—1 g—0 = Fu;|1,—0,r,—0> Which implies the result. O

1 Supplementary Example for Section IV.A.

Suppose that there are two unobservables that enter the outcome equation, U; = (Ui;,Ul%)’ for

t = 0,1, such that (U-}),U.ll) L T;|R; whereas (U%,U%) L Ti|R;. Let the outcome at baseline be a

A 14 A 4

trivial function of Ul.2 , whereas the outcome in the follow-up period is a non-trivial function of both

Ui}) and U3, e.g.

1

Yio = Uy

Yi = Uy + UG+ T(BiUj + BU7)

As aresult, even though Yo|T; = 1, R; 4 i0|T; = 0,R; holds, ¥;1(0)|T; = 1,R; =1 7dé Yiu|T; =0,R; =
1. In other words, the control respondents do not provide a valid counterfactual for the treatment
respondents in the follow-up period despite the identity of the baseline outcome distribution for
treatment and control groups conditional on response status. We can illustrate this by looking at

the average treatment effect for the treatment respondents,

E[Yn(1) =Yu(0)|T; = 1,R; = 1]

=E[U}\ + Ui +BiUj + BoUR T = LR = 1]~ ElUy + U3 |Ti = 1R = 1].

. [\

E[Y;|Ti=1,R;=1] #E[Y;1|T;=0,R;=1]

Hence, E[Y;|T; = 1,R; = 1] —E[Ya|T; =0,R; = 1] # BE[U}|T; = 1,R; = 1] + BE[UA|T; = 1,R; =
1], i.e. the difference in mean outcomes between treatment and control respondents does not
identify an average treatment effect for the treatment respondents.

We could however have a case in which the control respondents provide a valid counterfac-

tual for the treatment respondents even though the treatment effect for individual i depends on an



unobservable that is not independent of treatment conditional on response, i.e. Ul%. Specifically, let
(SALS) Yy =Uy +T(BiUs +Baly)

and consider the identification of an average treatment effect, E[Y;1(1) — Y;;(0)|T; = 1,R; = 1] =
E[U) +BiUL + BUA| Ty = 1,R; = 1] —E[UA|T: = 1,R; = 1] = E[Yy|T; = |,R; = 1] — E[Y;4|T; =
0,R; = 1], since E[U}|T; = 1,R; = 1] = E[U}|T; = 0,R; = 1]. Note however that in this case what
we identify is no longer internally valid for the entire respondent subpopulation, but for the smaller

subpopulation of treatment respondents.

SA2 Randomization Tests of Internal Validity

We present randomization procedures to test the IVal-R and IVal-P assumptions for completely
and stratified randomized experiments. The proposed procedures approximate the exact p-values
of the proposed distributional statistics under the cross-sectional i.i.d. assumption when the out-
come distribution is continuous.®® They can also be adapted to accommodate possibly discrete or
mixed outcome distributions, which may result from rounding or censoring in the data collection,
by applying the procedure in Dufour (2006). In this section, we focus on distributional statistics for
the testable restrictions on the baseline outcome as in Propositions 1 and 2 in the paper. The ran-
domization procedures we propose, however, can be applied to test joint distributional hypotheses
that include covariates as in Section I[V.B..

We first outline a general randomization procedure that we adapt to the different settings we
consider.”? Given a dataset Z and a statistic T, = T(Z) that tests a null hypothesis Hy, we use
the following procedure to provide a stochastic approximation of the exact p-value for the test
statistic 7,, exploiting invariant transformations g € %, (Lehmann and Romano, 2005, Chapter

15.2). Specifically, the transformations g € % satisfy Z 4 g(Z) under Hy only.

®We maintain the cross-sectional i.i.d. assumption to simplify the presentation. The randomization procedures
proposed here remain valid under weaker exchangeability-type assumptions.
70See Lehmann and Romano (2005); Canay, Romano and Shaikh (2017) for a more detailed review.



Procedure 1. (Randomization)
1. For g, which is i.i.d. Uniform(%), compute T,(g,) = T (g»(Z)),
2. Repeat Step 1 forb=1,...,B times,
3. Compute the p-value, p,p = BLH (1 +Z£:1 T (gp) > Tn})

A test that rejects when p, p < o is level o for any B (Lehmann and Romano, 2005, Chapter
15.2). In our application, the invariant transformations in % consist of permutations of individuals
across certain subgroups in our data set. The subgroups are defined by the combination of response
and treatment in the case of completely randomized trials, and all the combinations of response,

treatment, and stratum in the case of trials that are randomized within strata.

1 Completely Randomized Trials

The testable restriction of the I'Val-R assumption, stated in Proposition 1(a.ii), implies that the dis-
tribution of baseline outcome is identical for treatment and control respondents as well as treatment

and control attritors. Thus, the joint hypothesis is given by
(SA2.1)  Hy : Fyg\ri—0 ri=r = Fyg|1.=1 Ri=r for r=0,1.

The general form of the distributional statistic for each of the equalities in the null hypothesis

above is

T = |V (Fugiri—o.m=r = Fusin-1z=)||  forr=0.1,

where for a random variable X;, F, x, denotes the empirical cdf, i.e. the sample analogue of Fx,,
and ||.|| denotes some non-random or random norm. Different choices of the norm give rise to
different statistics. For instance, the KS and CM statistics are the most widely known and used.

The former is obtained by using the L norm over the sample points, i.e. ||f]|s. = max;|f(yi)|,



whereas the latter is obtained by using an L? norm, i.e. |f]ln2 = X%, f(y:)?/n. In order to test

the joint hypothesis in (SA2.1), the two following statistics that aggregate over Tnljr forr=0,1 are

standard choices in the literature (Imbens and Rubin, 2015),!

Tnl.,m = max{Tn{O? Tn{1}7

n
Tn{p = pn,oTn{o +pn71Tn1_‘1, where p, , = Z I{R;=r}/nforr=0,1.
i=1
The joint KS statistic we use to test H(} in the simulation and empirical section is given by

KSrlum = maX{KS}l707KS}l7]};Where forr=0,1

(SA22)  KS,,= max |1 (Fuy 0ol Ti = 1,Ri = r) — Fpy, (viol i = 0,Ri = 1)) |.

Let %1 denote the set of all permutations of individual observations within respondent and

attritor subgroups, for g € 41, g(Z) = {(Yo, T,

g(i)?Rg(i)) Ry =Ri, 1 <i < n}. Under H(} and the

cross-sectional i.i.d. assumption, Z L g(Z) for g € 4. Hence, we can obtain p-values for Tn{m and
Tn{ p under H(} by applying Procedure 1 using the set of permutations %01.

We now consider testing the restriction of the IVal-P assumption stated in Proposition 1(b.ii).
This restriction implies that the distribution of the baseline outcome variable is identically dis-
tributed across all four subgroups defined by treatment and response status. Let (7;,R;) = (7,r),
where (1,7) € 7 x #Z ={(0,0),(0,1),(1,0),(1,1)} and (7},r;) denote the j"* element of .7 x Z.

Then, the joint hypothesis is given wlog by

(SA23)  Hj @ Fygn—r,ri—r, = FrolTi—t;u1 Rierjsy TOT j =1, | T X Z| = 1.

"IThere are other possible approaches to construct joint statistics. We compare the finite-sample performance of the
two joint statistics we consider numerically in Section SA7.3.



In this case, the two statistics that we propose to test the joint hypothesis are:

2 — J—
| T x%|—1
2 _ . _
Lip= Z Wi H\/ﬁ (Fnﬂ’io\TFTj,Ri:rj Fn%o\TFTHl,Ri:er) H
j=1
for some fixed or data-dependent non-negative weights w; for j =1,...,|.7 xZ| — 1. In the

simulation and empirical sections, we use the following KS statistic to test Hg

(SA24)  KS2= max. KS; ;, where

KSYZ,,j = ml?lX|\/ﬁ(Fn,Ym(yi0|7} = Tj,Ri = rj) — Foy, ool T; = Tjs1,Ri = rjs1)) |-

and {t;,r;} is the j'* element of 7 x Z = {(0,0),(0,1),(1,0),(1,1)}.

Under Hg and the cross-sectional i.i.d. assumption, any random permutation of individuals
across the four treatment-response subgroups will yield the same joint distribution of the data.
Specifically, for g € 92, g(Z) = {(Yio, Ty(i), Rg(iy) : 1 <i < n}. We can hence apply Procedure 1

using go2 to obtain approximately exact p-values for the statistic Tn%m or Tn% p under Hg.

2 Stratified Randomized Trials

As pointed out in Section III.B.3. of the paper, the testable restrictions in the case of stratified or
block randomized trials (Proposition 2) are conditional versions of those in the case of completely
randomized trials (Proposition 1). Thus, in what follows we lay out the conditional versions of the
null hypotheses, the distributional statistics, and the invariant transformations presented in SA2.1.

We first consider the restriction in Proposition 2(a.ii), which yields the following null hypoth-

esis

1,.7 .
(SAZS) HO . FYiO‘T}:OvSi:saR[:r = FYiO‘Ti:LSi:&Ri:r forr = O, 1, NS y



To obtain the test statistics for the joint hypothesis Hé ’y, we first construct test statistics for a given

se .S,

Tiis = max V1 (Bl ri=0.5i=s Ri=r = Fn g =1 5,=s.Ri=r) |

Tnl,}fz = Z pi’;h || \/ﬁ (Fn,Y,-0|Ti:0,Si:s,Ri:r - Fn,Yio\Y}zl,Si:s,Ri:r) H ’
r=0,1

where pf,‘s =YY"  {Ri=nrS;=s}/Y" | 1{Si=s}. We then aggregate over each of those statistics

to get

T — max T

n,m sey n,m,s’
n
Y = Lt wher = A5 =) nfors e 7
se i=1

In this case, the invariant transformations under Hé"y are the ones where n elements are permuted
within response-strata subgroups. Formally, for g € %1 7 8(Z) = {(Yio, Ty(i)» Sq(i)» Re(i) * Se(i) =
SiyRyiy = Riy1 <i < n}, where Z = {(Yj,T;,S;,R;) : 1 < i <n}. Under Hé"y and the cross-
sectional i.i.d. assumption within strata, Z 4 g(Z) for g € ,%l’y. Hence, using %01 5 we can obtain
p-values for Tn{;,’ly and Tnl,},y under Hé’y.

We now consider testing the restriction in Proposition 2(b.ii). The resulting null hypothesis is

given wlog by the following
2,7 . .
(SA2.6)  Hy™ « Fyglti=g; si=s Ri=r; = Fr|Ti=tj 1 Sims Rimryy fOr /=150, [T X 2| =15 €7

To obtain the test statistics for the joint hypothesis Hg ’y, we first construct test statistics for a given
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2. —
Tains = Ry P ”\/ﬁ (FH,IG0|7}:Tj,Si:s,R,-:rJ~ F n,no\T,:fjH,s,:s,R,:er) ’
|7 x%|—1
2.7 .
Tn,p,s = Z Wis vn <Fn7Yio|Ti=Tj,Si=S7Ri=rj - Fn7160|7"i=17j+1,Si=S7Ri=Vj+1) )
J=1
given fixed or random non-negative weights w; s for j=1,...,|.7 x #Z|—1 and s € .. We then

aggregate over each of those statistics to get

2.5 _ 2,
Tn.m = max Tn,m,sv
’ s€
2.9 2,
Tn-,P - Z WSTnJJ:S’
s€.s

given fixed or random non-negative weights wy for s € ..

Under the above hypothesis and the cross-sectional i.i.d. assumption within strata, the distribu-
tion of the data is invariant to permutations within strata, i.e. for g € %z,y’ 8(Z) ={(Yio, Ty(i)>Sq(i)s Re(i)) :
Seiy =Si,1 < i < n}. Thus, applying Procedure 1 to Tnz,;fﬂ or Tn%};y using goz 7 yields approxi-
mately exact p-values for these statistics under Hg 7

In practice, it may be possible that response problems could lead to violations of internal va-
lidity in some strata but not in others. If that is the case, it may be more appropriate to test interval
validity for each stratum separately. Recall that when the goal is to test the IVal-R assumption,
the stratum-specific hypothesis is HS’S t Fyo|1i=0,5;=s.Ri=r = Fr,y|T=1,5=s,ri=r for r =0, 1. Hence,
for each s € .¥, one can use %1,y in the above procedure to obtain p-values for Tnlr,}ys and Tn{;;f,
and then perform a multiple testing correction that controls either family-wise error rate or false
discovery rate. We can follow a similar approach when the goal is to test the IVal-P assumption
conditional on stratum.

The aforementioned subgroup-randomization procedures split the original sample into respon-

dents and attritors or four treatment-response groups. This approach does not directly extend to

11



cluster randomized experiments.”? Given the widespread use of regression-based tests in the em-
pirical literature, we illustrate how to test the mean implications of the distributional restrictions
of the IVal-R and I'Val-P assumptions using regressions for completely, cluster, and stratified ran-

domized experiments in Appendix A in the paper.

SA3 Selection of Articles from the Field Experiment Literature

1 Selection of Articles for the Review

In order to understand both the extent of attrition as well as how authors test for attrition bias in
practice, we systematically reviewed articles that report the results of field experiments. We include
articles that were published in the top five journals in economics, as well as five highly regarded
applied economics journals: American Economic Review, American Economic Journal: Applied
Economics, Econometrica, Economic Journal, Journal of Development Economics, Journal of
Human Resources, Journal of Political Economy, Review of Economics and Statistics, Review of
Economic Studies, and Quarterly Journal of Economics.”® By searching for RCT, randomized con-
trolled trial, or field experiment in each journal’s website, we identified 160 articles that estimate
the impacts of a field experiment intervention and were published between 2009 and 2015.74

Of these 160 experiments, we exclude five articles with a study design for which attrition is
irrelevant due to the use of repeated cross-sections or the fact that attrition is the only outcome re-
ported in the abstract. Further, since the testable restrictions proposed in Section III are conditions

on the baseline outcome, we also excluded 62 articles that did not have available baseline data for

any of the abstract outcomes. Half of these papers did not collect baseline outcomes (29) or had a

"2To test the distributional restrictions for cluster randomized experiments, the bootstrap-adjusted critical values for
the KS and CM-type statistics in Ghanem (2017) can be implemented.

3We chose these four applied journals because they are important sources of published field experiments.

7#Qur initial search using these keywords yielded a total of 235 articles, but 75 of them were neither field experi-
ments nor studies that report the impacts of an intervention on a specific outcome for the first time. Of these 75 papers,
33 were observational studies exploiting quasi-experimental variation, and 27 were lab experiments or lab in the field
(which usually take place over a very short period of time). The remaining 15 articles had a primary goal different from
reporting an intervention’s impact. In particular, some papers used existing field experiments to calibrate structural
models or illustrate the application of a new econometric technique, and others used the random allocation of survey
formats to test for the best approach to elicit information on variables such as consumption and poverty.

12



response rate at baseline below fifty percent (4). The other experiments targeted a population for
which the baseline outcome takes the same value for everyone by design (29).73

Thus, we review 93 papers with a study design for which attrition is relevant and baseline
data on at least one main outcome variable reported in the abstract.”® Of these articles, 61% were
published in the Journal of Development Economics, the American Economic Journal: Applied
Economics, and the Quarterly Journal of Economics (see Table SA2).

One challenge that arose in our review was determining which attrition rates and attrition tests
are most relevant, since the reported attrition rates usually vary across different data sources or
different subsamples. We chose to focus on the results that are reported in the abstract in our
analysis of attrition rates. But, since many authors do not report attrition tests for each of the
abstract results, in our analysis of attrition tests we focus on whether authors report a test that is

relevant to at least one abstract result.

2 Selection of Articles for the Empirical Applications

In order to conduct the empirical applications in Section V, we identified 47 articles that had
publicly available analysis files from the 93 articles in our review (see Section II). To select the
four articles included in the empirical applications, we reviewed the data files of the twelve articles
with the highest reported survey attrition rates. We excluded field experiments for a variety of
reasons that would not, in the majority of cases, affect the ability of the authors to implement our
tests. Of the eight experiments that were excluded: two did not provide the data sets along with
the analysis files due to confidentiality restrictions, two provided the data sets but did not include
attritors, one did not provide sufficient information to identify the attritors, and one had a unique
outcome of interest that was nearly degenerate at baseline. In two cases, an exceptionally high

number of missing values at baseline was the limiting factor since the attrition rate at follow-up

75Some examples in this last category include training interventions that target unemployed individuals and mea-
sure impacts on employment, as well as studies that estimate the effect of an intervention on the take-up of a newly
introduced product.

76These 93 articles correspond to 96 field experiments since some papers report results for more than one interven-
tion.
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conditional on baseline response was lower than the attrition rate reported in the paper.

SA4 Attrition Tests in the Field Experiment Literature

In this section, we describe the different empirical strategies used to test for attrition bias in the
articles we review and classify them into differential attrition rate tests, selective attrition tests,
and determinants of attrition tests. We classify the strategies for the differential attrition rate test
and the determinants of attrition test as broadly as possible and include any article that performs
a regression under any of these two categories as performing the relevant test. For the selective
attrition tests, we specify the null hypotheses since they are closely related to the tests that we
propose. Throughout this section, we use the following notation to facilitate the exposition of each
strategy and the comparison across them:

-Let R; take the value of 1 if individual i belongs to the follow-up sample.

-Let T; take the value of 1 if individual i belongs to the treatment group.

-Let Xjo be a k x 1 vector of baseline variables.

-Let Y;o be a [ x 1 vector of outcomes collected at baseline.

-Let Zio = (X}, Y3)'.

1

-For a vector w, w’/ denotes the jth element of w.

1 Differential Attrition Rate Test

The differential attrition rate test determines whether the rates of attrition are statistically signifi-

cantly different across treatment and control groups.

1. t-test of the equality of attrition rate by treatment group, i.e. Hy: P(R; =0|T; =1) = P(R; =
0|T; =0).

2. R; = Y+ T;B + U;; may include strata fixed effects.

3. Ri =y+T;B +X},0 + Yo+ Us; may include strata fixed effects.

14



2 Selective Attrition Test

The selective attrition test determines whether, conditional on response status, the distribution of
observable characteristics is the same across treatment and control groups. We identify two sub-
types of selective attrition tests: i) a test that includes only respondents or attritors, and ii) a test
that includes both respondents and attritors. We note that the selective attrition tests are usually
conducted on both baseline outcomes and baseline covariates. Some authors conduct multiple tests
for individual baseline variables while others test all baseline variables jointly (see Table SA4 for
details). Thus, for each estimation strategy, we report the null hypotheses that are used in each
case.

A Tests that include only respondents or attritors

1. t-test of baseline characteristics by treatment group among respondents:

(a) Multiple hypotheses for individual baseline variables:

Foreach j =1,2,...,(l+k)
H]:E[Z)|T; = 1,R; = 1] = E[Z},|T; = 0,R; = 1].
(b) Joint hypothesis for all baseline variables:
Ho:E[Z)|T:=1,Ri=1]=E[Z})|Ti=0,Ri=1],Vj=1,...,(l+k).

2. T; = Y+ Xj,0 + Yoo + U; if R; = 1; may include strata fixed effects.

(a) Joint hypothesis for all baseline variables:
Hy:6=0=0

3. Kolmogorov-Smirnov (KS) test of baseline characteristics by treatment group among re-
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spondents.
(a) Multiple hypotheses for individual baseline variables:

Foreach j=1,2,...,(l+k)

F

J. R .
Hy - Fy Zh|Ri=1

i'(]|Ti7Ri:] o

4. Zl.{) =y+TB/ + Ul.j if R, =1, for j=1,2,...,(l+k); may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables:

Foreach j=1,2,...,(l+k)
H({ B/ =0
(b) Joint hypothesis for all baseline variables:
Hy:B' =2 =-- = B+ =0

5. Zi{) =y+TB/ + Ul.j if R; =0, for j=1,2,...,(l+k); may include strata fixed effects.
(a) Multiple hypotheses for individual baseline variables:
Foreach j=1,2,...,(I+k)

H({:Bj:O

B Tests that include both respondents and attritors

1. Zl{) =Y +TB/+(1 —R,-))Lj—l—Ti(l—R,-)(pj—i—Uij for j=1,2,...,(I+k); may include strata

fixed effects.

(@) Multiple hypotheses for individual baseline variables:"’

77 Although this null hypothesis is testing for the equality of means for treatment and control respondents, we classify
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Foreach j =1,2,...,(l+k)
H({:ﬁj:O

2. Ri=v+TB+X,0 + Yo+ ;XA + T;Y;y A2 + U;; may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables I:
Foreachm=1,2,...,kand j=1,2,...,]
ll m 2'27

HO™:0m=0 | HM :a/=0 , Hy'"™:A"=0 , Hy”:A =0

(b) Multiple hypotheses for individual baseline variables II:

Foreachm=1,2,...,kand j=1,2,...,]
HM™ A =0, H:A =0
(c) Joint hypothesis for all baseline variables I:
Hy:p=0=a=A=4,=0
(d) Joint hypothesis for all baseline variables II:
Hy: M1 =4 =0

3. t-test of the equality of the difference in baseline outcome between respondents and attritors

across treatment groups.

(a) Multiple hypotheses for individual baseline outcomes:

this strategy as one that includes both respondents and attritors given that the regression test is based on both samples.
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Foreach j=1,2,...,1

H] :E[Y}|T;=1,Ri =1]—E[Y}|T; = 1,R; = 0]

— E[Y})|T; = 0,R; = 1] — E[Y})|T; = 0,R; = 0]

3 Determinants of Attrition Test

The determinants of attrition test determines whether attritors are significantly different from re-

spondents regardless of treatment assignment.
1. R = v+ Ti + X},0 4+ Yya + U;; may include strata fixed effects.
2. Zl{) =¥ +(1—R)A + Ul.j, Jj=1,2,...,(l+k); may include strata fixed effects.
3. Ri = y+X},0 + Y&+ U;; may include strata fixed effects.

4. Let Reason; take the value of 1 if the individual identifies it as one of the reasons for which
she dropped out of the program. The test consists of a Probit estimation of:

Reason; = y+ T;B + U; if R; = 1; may include strata fixed effects.

SAS Equal Attrition Rates with Multiple Treatment Groups

In this section, we illustrate that once we have more than two treatment groups and violations
of monotonicity, then equal attrition rates are possible without imposing the equality of pro-
portions of certain subpopulations unlike Example 2 in the paper. Consider the case where we
have three treatment groups, i.e. 7; € {0,1,2}. For brevity, we use the notation P;((rg,r1,r2)) =

P((R;(0),R;(1),Ri(2)) = (ro,r1,12)) for (rg,r1,r2) € {0,1}3. Hence,

P(Ri = OlTl = 0) ZH((O,O,O)) +Pi((0707 1)) +Pi((07 170)) +Pi((07 L, 1))
P(Ri = 0’Tl = 1) ZB((O,O,O)) +Pi((0707 1)) +I)l<(17070)) +Pi((1707 1))

(SAS.1) P(Ri - OyT, - 2) :P,((0,0,0)) +B((17070)) +Pt<(07 170)) +Pt<(17 170))
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The equality of attrition rates across the three groups, i.e. P(R; =0|T;=0)—P(R;=0|T;=1) =

P(R; =0|T; = 0) — P(R; = 0|T; = 2) = 0 implies the following equalities,

F((0,1,0)) +F((0,1,1)) = A((1,0,0)) + P((1,0,1))

(SA5.2)  B((0,0,1))+R((0,1,1)) = A((1,0,0)) + P((1,1,0))

which can occur without constraining the proportions of different subpopulations to be equal.

SA6 Identification and Testing for the Multiple Treatment Case

In this section, we present the generalization of Propositions 1 and 2 (Section SA6.1) as well as
the distributional test statistics (Section SA6.2) in the paper to the case where the treatment vari-
able has arbitrary finite-support. As in the paper, we provide results for completely and stratified
randomized experiments. We maintain that D;y = O for all i, i.e. no treatment is assigned in

the baseline period, D;; € &, where wlog 2 = {0,1,...,|Z|

i = (Dio,Din) €
{(0,0),(0,1),...,(0,|2|—1)}. Let T; denote the indicator for membership in the treatment group
defined by D;,ie. T, € 7 ={0,1,...,|2| — 1}, where T; = D;; and hence |.7| = |Z| by construc-

tion.

1 Identification and Sharp Testable Restrictions
A Completely randomized trials

Proposition 4. Assume (Uj,U;1,V;) L T,

(a) If (Uj,U;1) L Ti|R; holds, then

(i) (Identification) Y;1|T; = T,R; = 14 Yi(t)|Ri=1forte 7.

(ii) (Sharp Testable Restriction) Yip|T; = T,Ri =r 4 YolT; =7, R; =rforr=0,1, fort,7 €
T T#T.

(b) If (Uio,U;1) L R|T; holds, then
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(i) (Identification) Y;1|T; = T,R; = 14 Yii(7) forte 7.

(ii) (Sharp Testable Restriction) Yjo|T; = T,R; =r 4 Yoforte 7, r=0,1.

Proof. (Proposition 4) (a) Under the assumptions imposed it follows that Fy;, v, 17, 8, = Fu,u,|R;»
which 1mplles that ford € 9, FY (d)|T},Ri = f l{ut(d l/t) < }dFU,,|T,7R ( ) f 1{“;(61,14) S .}dFUit|Ri(u) =

Fy,(a

it

)|r;- (1) follows by letting # = 1 and d = 7, while conditioning the left-hand side of the last
equation on 7; = 7 and R; = 1 and the right-hand side on R; = 1. The testable implication in (ii)
follows by letting t = d = 0 and conditioning the left-hand side on 7; = 7 and R; = r and the
right-hand side on 7; = 7/ and R; = r, where T # 7'.

Following Hsu, Liu and Shi (2019), we show that the testable restriction is sharp by showing
that if (Y, Y1, T, Ry) satisfy Yio|T; = ©,R; = r £ Yo|T; = ¢/,R; = r for r = 0,1, 1,7 € T, T # 7,
then there exists (Ujo,U;1) such that Y (d) = w/(d,Uy) for some p,;(d,.) ford € ¥ and t = 0,1
and (Ujp,U;1) L T;|R; that generate the observed distributions. By the arbitrariness of U;; and p,
we can let U}, = Y (.) = (Yi(0),Yi(1),....Yi(|2| — 1)) and w;(d,Uy) = Zj@:_ol 1{j =d}Yi(j) for
d e 2,t=0,1. Note that Y;o = Y;o(0) since D,y = 0 w.p.1. Now we have to construct a distribution

of U; = (Uyy, U}, ) that satisfies

FUi|Ti7Ri = FYiO(')inl OITR: — FYiO(')inl (IR

as well as the relevant equalities between potential and observed outcomes. We proceed by first
constructing the unobservable distribution for the respondents. By setting the appropriate potential
outcomes to their observed counterparts, we obtain the following equalities for the distribution of

U; for the respondents in the different treatment groups

Firiperpy =F - Foire o
UlT=t.Ri=1 = Sy @)} 217 Yo (), Ti=t,Ri=1" Yol i=T.Ri=1

(5A6.1) =Pl 2 0 @) i i @) 2 i T Rt Yol Tt =1

By construction, Fy 7. g—1 = Fy,|r,—1- Now generating the above distribution for all 7 € .7 such
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. . . . /
that F{Yio(d) ‘fi_‘l_l>{Yi1(d)}fj;é)vyilv{yil(d)}“?:‘;rll‘Yi07Ti:T7Ri:1 which satisfies the following equality V7,7’ €
T, T#+7T,

F 7-1 _ 7|1
Ko@)} 0 (@)Y 22b Y LY (@)} o Ti=2 Ri=1

=F 7 ’_ 2|1
o)} Y (@)} 5 ) Yo (Y (@)} Wi Ti=v Ri=17

yields U; L T;|R; = 1 and we can construct the observed outcome distribution (Y;o,Y;;)|R; = 1 from
UilR; = 1.

The result for the attritor subpopulation follows trivially from the above arguments,

(SA6.2)  Fyjr—rr=0=Fp 1711

Fy i7r o
2170 4 ()i, Ti=7,R=0" Yol Ti=7.Ri=0

Since Fy1, g—0 = Fy,y|r;=0 by construction, it remains to generate the above distribution for all

T € 7 using the same This leads to a distribution of U;|R; = 0 that is

F 7)1 .
{Ylo(d) ‘d:‘] 7Yif(‘)|5/i07Ri:O

independent of 7; and that generates the observed outcome distribution Yjo|R; = 0.

(b) Under the given assumptions, it follows that Fy, v, 7., = Fu,un |1, = Fuy,uy Where the
last equality follows by random assignment. Similar to (a), the above implies that for d € Z,
Fy,(a)mz,(-) = [ Wt (d,u) < YdFy,p g, (u) = [ H{(d,u) < }dFy, (u) = Fy,g). (i) follows by
letting d = 7 and ¢t = 1, while conditioning the left-hand side of the last equation on 7; = 7 and
R; = 1, whereas (ii) follows by letting d = ¢t = 0 while conditioning on 7; = T and R; = r for T € .7,
r=0,1.

To show that the testable restriction is sharp, it remains to show that if (Yjo,Y;1, T}, R;) satisfies
Yio|T;, R; 4 i0(0), then there exists (Ujp, U;;) such that Y;(d) = w(d,U;) for some w,(d,.) ford €
P andt=0,1and (Uj,U;;) L (T;,R;). Similar to (a.ii), welet U}, = Y (.) = (¥ (0), Y (1), ..., Y (|2| —
1)) and W (d,Uy) = 2].9;—0‘ 1{j=d}Yy(j) ford € 2,1t =0,1. By construction, Y;p = Yjp(0). Fur-
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thermore, Fy, |7, g, = Fy;, by assumption. It follows immediately that for all 7 € 7

F. g — :F 2|—1 _ j 1 F
U=t Re=1 = o @) (@YY ¥a (@)L I Ti=r.R=1 107

Fuir=tr—0=F 711 Fy,.
UIT=TR=0 = 2 mig (@) 2 Yar () o Ti=m. Ri=0” 10

Now constructing all of the above distributions using the same F that satisfies

iold) Y2 Y ()Y Ty
the above equalities for all T € .7 implies the result. 0

B Stratified randomized trials
Proposition 5. Assume (Ujp,U;1,V;) L T;|S;.
(a) If (Ui, U;1) L T;|S;, R; holds, then

(i) (Identification) Y;1|T; = 1,S; =s,Ri =1 4 Yii(7)|Si=s,Ri =1,
forte T, se /.

(ii) (Sharp Testable Restriction) Yi|T; = 7,S; =s,Ri =r 4 Yoll; =7,8Si=s,Ri=r, V1,7 €
T 1#1,5€ S, r=0,1

(b) If (Ui, U;1) L R;|T; holds, then

(i) (Identification) Y;1|T; = 1,8; = s, R; — 14y Yi(t)|Si=sforte T,se ..
(ii) (Sharp Testable Restriction) Yio|T; = 1,8; = s,Ri =r 4 Yo|Si=sforte T, r=0,1,

se ..

Proof. (Proposition 5) The proof for this proposition follows in a straightforward manner from the

proof for Proposition 4 by conditioning all statements on S;. [

2 Distributional Test Statistics

Next, we present the null hypotheses and distributional statistics for the multiple treatment case.

For simplicity, we only present the joint statistics that take the maximum to aggregate over the
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individual statistics of each distributional equality implied by a given testable restriction.

A Completely randomized trials

The null hypothesis implied by Proposition 4(a.ii) is given by the following,
(SA6.3)  Hy” i Fyyrmrrier = Fro[r—v pir for 1,7 € 7,14 ¢, r=0,1.

Consider the following general form of the distributional statistic for the above null hypothesis

is Tnl’y = Max,c(0,1} Tn{’,‘g, where for r =0, 1,

Ty = (e i IVn (B g ri=e ri=r = Fnpo e r=r) ||

The randomization procedure proposed in the paper using the transformations %1 can be used to
obtain p-values for the above statistic under Hé’g.
Let (1,r) € 7 x %, where Z = {0,1}. Let (t;,7;) denote the j"* element of .7 x 2, then the

null hypothesis implied by Proposition 4(b.ii) is given by the following:

2,7 . .
(SA64) HO . FKO|7}:Tj7Ri:rj = FKO‘Z’:?/#lvRi:errl for J= 1, ceey ’9 X %‘ —1.
the test statistic for the above joint hypothesis is given by

Y

2,7 _ —
T T el X1 H\/ﬁ (Fn,Yioln:rj,R,»:r,- Fn,YiolT,:r_,-H.,R,»:r,-H)

The randomization procedure proposed in the paper using the transformations %2 can be used to

obtain p-values for the above statistic under Hé 7
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B Stratified randomized trials

The null hypothesis implied by Proposition 5(a.ii) is given by the following,
1,7, . o / / o
(SA65) HO . FYi0|Ti=T,Si:S7Ri=r = FKO|7}:T/7Si:S7Ri:r for T,T € y, T 7é T,85¢€ y, r= O, 1.

Consider the following general form of the distributional statistic for the above null hypothesis

is Tn] IT = MaXge, MaX, (0,1} Tn],;’?, where for s € . and r =0, 1,

T 1;1;)21 v V1 (B o ti=.5=s.Rimr = Fuyio Ti=t' 5,=s.Ri=r) ||

The randomization procedure proposed in the paper using the transformations %1 7 can be used

1,.,.7 15”7

to obtain p-values for 7, under H’
Let (1,r) € 7 x Z. Let (tj,r;) denote the j™* element of 7 x %, then the null hypothesis

implied by Proposition 5(b.ii) is given by the following:
2,7, _ P
(SA66) HO FY0|T T}, Si=8,Ri=r; _FYiO|Ti:'Fj+laSi:57Ri:rj+l forj = 1,,‘9)(%’ — I,SE L.

the test statistic for the above joint hypothesis is given by

2,97 __ —
Tm Eréa,;jzl,...r,l\?);%’kl H vn (F"71/i0|7}:7jvsi:ssRi:rj F",Yi0|7}:77j+17Si=S7Ri=rj+1)

The randomization procedure proposed in the paper using the transformations %02 *” can be used

to obtain p-values for the above statistic under H’ 25,7

SA7 Simulation Study

We illustrate the theoretical results in the paper using a numerical study. The simulations examine
the performance of the differential attrition rate test as well as both the mean and distributional

tests of the I'Val-R and I'Val-P assumptions.
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1 Simulation Design and Test Statistics

The data-generating process (DGP) is described in Panel A of Table SA1. We assign individuals
to one of the four response types: always-responders, never-responders, control-only responders,
and treatment-only responders. The unobservables that determine the outcome consist of time-
invariant and time-varying components. We introduce dependence between the unobservables in
the outcome equation and potential response by allowing the means of the time-invariant compo-
nent to differ for each response type. We also allow for heterogeneous treatment effects, so that
the ATE-R can differ from the ATE.

We conduct simulations using four variants of this simulation design that feature different cases
of IVal-R and IVal-P as summarized in Panel B of Table SA1.”® Designs I and II present cases
where the differential rate test would have desirable properties as a test of IVal-R.”® Both designs
allow for dependence between the unobservables in the outcome equation and potential response
and impose monotonicity in the response equation by ruling out control-only responders. Design
I allows for non-zero proportions of treatment-only responders and thereby a violation of I'Val-R.
Design II rules out treatment-only responders and, as a result, we have IVal-R, but not 1Val-P.

Designs Il and IV illustrate Examples 1 and 2 in Section II1.C., respectively. Design III demon-
strates a setting in which we have differential attrition rates and I'Val-P. It imposes monotonicity
and differential attrition rates as in Design I, but allows the unobservables in the outcome equation
and potential response to be independent. Finally, Design IV follows Example 2 in demonstrating a
case in which there are equal attrition rates and a violation of internal validity. Here, we allow for a
violation of monotonicity and dependence between the unobservables in the outcome equation and
potential response. We impose that the proportion of treatment-only and control-only responders

is identical and, as a result, the design features equal attrition rates.

78We only consider these four designs to keep the presentation clear. However, it is possible to combine different
assumptions. For instance, if we assume po; = p1o and (Ui, U;1) L (R;(0),R;(1)), then we would have equal attrition
rates and IVal-P. We can also obtain a design that satisfies exchangeability by assuming &y; = 6;9. If combined with
Po1 = P10, then we would have equal attrition rates and IVal-R only (Proposition 3(iii)).

To be precise, in these designs, the differential attrition rate test would have non-trivial power when IVal-R is
violated while controlling size when IVal-R holds.
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Table SA1 Simulation Design

Panel A. Data-Generating Process

Yy = BiDis + B2 Dy 0 + o + )y fort = 0,1

Outcome: where ; = B, = 0.25.
Treatment: T iid. Bernoulli(0.5), Dip =0, D;; = T;.
Response: Ri = (1 =T)R:(0) + TiRi(1)
ponse: where p,,r, = P((Ri(0),Ri(1)) = (ro,r1)) for ro,ry € {0,1}?
Uit - (aianil)/7 t= 07 17
N (800, 1) if (Ri(0),Ri(1)) = (0,0),
iid. J N(8or,1) if (Ri(0),Ri(1)) =(0,1)
. OC'R-O,R-lllN 1)L i\V), 1Y y 1),
Unobservables. t| l( ) l( ) N(6103 1) lf (RZ(O),R,(I)) — (1’0)’
N(8i1. 1) if (Ri(0).Ri(1)) = (1.1).
ni1 = 0.5n;0 + €, (T],'(),Ei())/ itd. N(0,0.Slz)
Panel B. Variants of the Design
Design I II I v
Monotonicity in the Response Equation Yes Yes Yes No
Equal Attrition Rates No Yes No Yes
IVal-R Assumption No Yes Yes No
IVal-P Assumption ((Uy,U;1) L R;) No No Yes No

Notes: For an integer k, I, denotes a k x k identity matrix. In Designs I and II, we let &y9 = —0.5, dy; = 0.5,
and 017 = — (oo poo + 501[)01)/171], such that E[OC,'] = 0. In Design III, 6r0r1 =0 for all (rg,r) € {0, 1}2,
which implies U;; L (R;(0),R;(1)) for t =0,1. In Design IV, 8yp = —0.5, 8p; = —619 = 0.25, and &1 =
— (80000 + So1po1 + S10p10)/p11- As for the proportions of the different subpopulations, in Designs I-I11,
we let Poo = P(R,' = O‘Tl = l), Po1 = P(Ri = 0|T, = 0) —P(R,' = 0|Tl = 1), and P11 = 1 — Poo — Po1, whereas
in Design IV, we fix p1o = po1, poo = p10/4, and P(R; = 0|T; = 0) = poo + P10-

In all four designs, we chose a range of attrition rates from the results of our review of the
empirical literature (see Figure 1). Specifically, we allow for attrition rates in the control group
from 5% to 30%, and differential attrition rates from zero to ten percentage points. To illustrate the
implication of the designs for estimated mean effects, we report the simulation mean and standard
deviation of the estimated difference in mean outcomes for the treatment and control respondents
in the follow-up period (Y] ¥ — Y{F).

The primary goal of our simulation analysis is to compare the performance of the differential

attrition rate test as well as the mean and distributional I'Val-R and IVal-P tests using a 5% level
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of significance. The differential attrition rate test is a two-sample z-test of the equality of attrition
rates between the treatment and control group, P(R; = 0|T;) = P(R; = 0). The hypotheses of the

mean [Val-R and IVal-P tests (denoted with an M subscript) are given by:

(SA7.1)  Yio=1TiRi +Y1(1 = T)Ri+ v10Ti(1 = R;) + Yoo(1 = T;)(1 = R;) + &

Hoy = %10 = Y0, (CR-TR)

H&}@ D1 = Y1, (CA-TA)
(SA7.2) Hop: Yo =0 & Vi1 = Y1, (IV-R)
(SA7.3) Hgpt Yi1 = Y01 = Yio = Yoo, (IV-P)

H&’;,[ (H&’f,,) tests the significance of mean differences between the treatment and control respon-
dents (attritors) only. These two hypotheses are similar to widely used tests in the literature and
are both implications of the IVal-R assumption. H& i (H& ) are the hypotheses of the mean IVal-
R (IVal-P) tests in Section III.B.2., which we implement using Wald statistics and asymptotic
x? critical values. To implement the distributional IVal-R and I'Val-P tests, we use Kolmogorov-

Smirnov-type (KS) statistics of their respective hypotheses,

(SA7.4)  HY: Yo|TRi =r<Yo|Ri=r, forr=0,1,

d
(SA7.5)  Hj: Yo|Ti,Ri = Y.

We formally define the KS statistics for the above hypotheses in Section SA2.1, where we also
describe the randomization procedures we use to obtain their p-values.
2 Simulation Results

Table SA9 reports simulation rejection probabilities for the differential attrition rate test as well
as the mean and distributional tests of the IVal-R and IVal-P assumptions for Designs I-IV. First,

we consider the performance of the differential attrition rate test. Columns 1 through 3 of Table
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SAQ9 report the simulation mean of the attrition rates for the control (C) and treatment (7") groups
as well as the probability of rejecting a differential attrition rate test. Designs I and II, which obey
monotonicity and allow for dependence between the unobservables in the outcome equation and
potential response, illustrate the typical cases in which the differential attrition rate test can be
viewed as a test of IVal-R. In Design I, where internal validity is violated, the test rejects above
5%, while in Design II, where IVal-R holds, the test controls size. Designs III and IV, on the other
hand, illustrate the concerns we raise regarding the use of the differential attrition rate test as a test
of IVal-R. In Design III, the differential attrition rate test rejects at a frequency higher than 5%
simply because the attrition rates are different even though IVal-P holds. In Design IV, however,
the differential attrition rate test does not reject above 5% when internal validity is violated because
attrition rates are equal.

Next, we examine the performance of the IVal-R tests, which are given in Columns 4 through
7 of Table SA9. As expected, where IVal-R holds (Designs II and III), the tests control size.
Similarly, where I'Val-R is violated (Designs I and IV), the tests reject above 5%. In general, the
relative power of the test statistics may differ depending on the DGP. In our simulation design,
however, the rejection probabilities of the attritors-only test (CA-TA) and the joint tests (Mean and
KS) are significantly higher than the test based on the difference between the treatment and control
respondents (CR-TR).80

The test statistics of the IVal-P assumption (Columns 8 and 9 in Table SA9) also behave ac-
cording to our theoretical predictions. In Designs I, IT and IV, where there is dependence between
the unobservables in the outcome equation and potential response, the IVal-P test rejects above
5%. Of particular interest is Design 11, since internal validity holds for the respondents, but not for
the population (i.e. IVal-R holds, but I'Val-P does not). Thus, although the IVal-P test does reject,
the I'Val-R test does not reject above 5%. In this case, the difference in mean outcomes between
treatment and control respondents (i.e. the estimated treatment effect) is not unbiased for the ATE

(0.25), but it is internally valid for the respondents. In Design III, which is the only design where

80This may be because the treatment-only responders are proportionately larger in the control attritor subgroup than
in the treatment respondent subgroup.
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I'Val-P holds, both the mean and KS tests control size. Examining the difference in mean outcomes
between treatment and control respondents at follow-up in this design, we find that it is unbiased
for the ATE across all combinations of attrition rates.

Overall, the simulation results illustrate the limitations of the differential attrition rate test and
show that the tests of the IVal-R and IVal-P assumptions we propose behave according to our
theoretical predictions. In what follows, we examine the finite-sample performance of a wider

variety of the distributional tests of the IVal-R and IVal-P assumptions.

3 Extended Simulations for the Distributional Tests

A Comparing different statistics of the distributional hypotheses

We consider the Kolmogorov-Smirnov (KS) and Cramer-von-Mises (CM) statistics of the simple
and joint hypotheses. For the joint hypotheses, we include the probability weighted statistic in
addition to the version used in the paper.

For the IVal-R assumption, consider the following hypotheses implied by Proposition 1(b.ii) in

the paper
1,1 d
HM': Yo|Ti = 1,Ri =0£ YT, =0,R; =0, (CA—TA)
HY?: Yo|T,=1,Ri=1%Yo|T; =0,R =1, (CR—TR)
(SA7.6) H} : Hy'&H,”. (Joint)

For r =0, 1, the KS and CM statistics to test H&’rﬂ is given by

KS,, = g},}?gﬂ\/ﬁ(Fn,no(yio!Ti = LR =) = Foy, (violT; = 0,Ri = 1)) |.

2
(SA7.7) CM,,IL = Zi:Ri:r (\/E(anYio(yiO’Ti :nl?Ri = r) _Fn,YiO(yi0|Ti = OaRi = r))
’ it {Ri=r}

For the joint hypothesis H(}, which is the sharp testable restriction in Proposition 1(b.ii) in the

paper, we consider either KS,le = max{KS,io,KSi () or KS,L, = Pn,OKS,l,o —I—pn,lKS; 1» Where
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pnr =Y/ {Ri=r}/nforr=0,1. CM, , and CM,%J, are similarly defined.

Table SA10 presents the simulation rejection probabilities of the aforementioned statistics of
the I'Val-R assumption. For each simulation design and attrition rate, we report the rejection prob-
abilities for the KS statistics of the simple hypotheses, KS;11,0 and KS,LI, using asymptotic critical
values (KS (Asym.)) as a benchmark for the KS (K'S (R)) and the CM (CM (R)) statistics using the
p-values obtained from the proposed randomization procedure to test H(% (B =199). The different
variants of the KS and CM test statistics control size under Designs II and III, where IVal-R holds.
They also have non-trivial power in finite samples in Designs I and IV, when IVal-R is violated.
The simulation results for the distributional statistics also illustrate the potential power gains in
finite samples from using the attritor subgroup in testing the IVal-R assumption. In testing the
joint null hypothesis, we find that KS,ILm and CM,Lm (Joint (m)) exhibit better finite-sample power

properties than KS,117 p and CM,i » Joint (p)). We also note that the randomization procedure yields

rejection probabilities for the two-sample KS statistics, KS,ll’O and KS!

u.1> that are very similar to

those obtained from the asymptotic critical values. In addition, in our simulation design, the CM
statistics generally have better finite-sample power properties than their respective KS statistics,
while maintaining comparable size control.

We then examine the finite-sample performance of the distributional statistics of the IVal-P
assumption. Proposition 1(b.ii) in the paper implies the three simple null hypotheses as well as

their joint hypothesis below,

HE': YolTi=0,Ri=0< Y| =0,R =1, (CA—CR)
HE?: YolTi=0,Ri=1<Y|Ti=1,R =0, (CR—TA)
HY: Y|l =1, Ri=0%Yo|T;=1,R =1, (TA—TR)
(SA7.8) H} : Hy' & Hy* & Hy. (Joint)

Let (1j,7;) denote the j” element of T x %Z = {(0,0),(0,1),(1,0),(1,1)}. We can define the KS
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and CM statistics for Hg " for each j=1,2,3 by the following,

2 —
KS, ;= max ) ‘\/ﬁ (Fn7Yio|Ti:Tj—17Ri:rj—1 Fn7KO|Ti:Tj7Ri:rj> ) )

(TR €{(T),7),(Tj1,7 )11

2
(SA7.9) CME — (TR €{(T),r),(Tj1,7j41) o ! a 0 ! !
: n,j - n 9
P (TR € {(T)r)), (Tjgn,rjs1) T

The joint hypothesis Hg is tested using the joint statistics KS,%jm = max;—1)3 KSi ;jand CM,%)m =
max;—123 CM,%J.

In Table SA11, we report the simulation rejection probabilities for distributional tests of the
I'Val-P assumption. In addition to the aforementioned statistics whose p-values are obtained using
the proposed randomization procedure to test Hg (B =199), the table also reports the simulation
results for the KS statistics of the simple hypotheses using the asymptotic critical values. Under
Designs I, II and IV, IVal-P is violated, the rejection probabilities for all the test statistics we
consider tend to be higher than the nominal level, as we would expect. The joint KS and CM test
statistics behave similarly in this design and have comparable finite-sample power properties to the
test statistic of the simple hypothesis (TA-TR), which has the best finite-sample power properties
in our simulation design. Finally, in Design III, where IVal-P holds, our simulation results illustrate

that the test statistics we consider control size.

B Additional variants of the simulation designs

To illustrate the relative power properties of using the simple vs joint tests of internal validity,
we present additional results using variants of the simulation designs. We show the results of the
KS tests for the case where P(R; = 0|T; = 0) = 0.15.8! For the joint hypotheses, we report the
simulation results for the KS statistic that takes the maximum over the individual statistics.

Panel A in Figure SA1 displays the simulation rejection probabilities of the tests of the IVal-R

assumption while Panel B displays the simulation rejection probabilities of the tests of the I'Val-

81We use an attrition rate of 15% in the control group as reference since that is the average attrition rate in our
review of field experiments. See Section II in the paper for details.
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P assumption. We present these rejection probabilities for alternative parameter values of the
designs we consider in Section SA7 in the paper. Design II to I depicts the case in which we
vary the proportion of treatment-only responders, po, from zero to 0.9 x P(R; = 0|T; = 0), where
po1 = 0 corresponds to Design II and pg; > O to variants of Design 1. Design III to I depicts
the case in which we vary the correlation parameter between the unobservables in the outcome
equation and the unobservables in the response equation, p, from zero to one. Hence, p =0
corresponds to Design III while p > 0 corresponds to different versions of Design I. Finally, the
results under Design II to IV are obtained by fixing pg; = p1o and varying them from zero to
0.9 x P(R; =0|Ti=0). Design II corresponds to the case in which pg; = p1o =0and pg; = p1o >0
corresponds to different versions of Design I'V.

Overall, the simulation results illustrate that the joint tests that we propose in Section SA2 have
better finite-sample power properties relative to the statistics of the simple null hypotheses. Most
notably, the results under Design II to I in Panel A of Figure SA1 show that when I'Val-R does not
hold (i.e. po; > 0), the simulation rejection probabilities of the joint test are generally above the

simulation rejection probabilities of the simple test that only uses the respondents.

SA8 Tables and Figures
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Table SA2 Distribution of Articles by Journal and Year of Publication

Journal Year Total

2009 2010 2011 2012 2013 2014 2015

AEJ: Applied 0 0 0 3 3 3 8 17
AER 0 1 1 2 0 2 2 8
EJ 0 0 1 2 0 5 0 8
Econometrica 1 0 0 0 0 1 0 2
JDE 0 0 1 1 3 11 6 22
JHR 0 0 0 1 1 1 2 5
JPE 0 0 1 0 0 0 0 1
QIE 1 1 4 3 2 4 3 18
REstat 2 0 2 1 1 1 3 10
REstud 0 0 0 0 1 1 0 2
Total 4 2 10 13 11 29 24 93

Notes: The 93 articles that we include in our review correspond to 96 field experi-
ments. The two articles that reported more than one field experiment are published
in the AER(2015) and the QJE(2011), respectively.

Table SA3 Overall Attrition Rate by Country’s Income Group

Prop. of

Field Experiments in: N Mean SD Min Max p25 p75 Experiments with
Rate > 15%

High income countries 28 207 242 O 87 3 28 46%

Upper middle income countries 18 156 131 O 54 7 20 55%

Low and lower middle income countries 47 119 12.6 0 59 2 18 34%

All countries 93 153 172 0 87 33 21 42%

Notes: This table considers the highest overall attrition rate for each field experiment in our review and
excludes one paper that does not report overall attrition rates. We classify countries by income group
according to the official definition of the World Bank.

Table SA4 Number of Baseline Variables Included in The Selective Attrition Test

Category No. of Baseline Variables Included
Mean SD Min Max p25 p75
All papers that conduct a selective attrition test 173 103 1 46 10 22

Papers that test on multiple baseline variables:
Multiple hypotheses for individual variables (76%) 16.9 9.7 2 46 10 21
Joint hypothesis for all variables (24%) 203 113 4 44 13 23

Notes: Of the 47 experiments that conduct a selective attrition test, 45 test on multiple baseline
variables. This table excludes one experiment that tests on multiple baseline variables but does
not provide sufficient information for it to be categorized. Percentages are a proportion of the 45
experiments that test on multiple baseline variables.
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