
Who Benefits from a Smaller Honors Track? - ONLINE
APPENDIX∗

Zachary Szlendak Richard Mansfield
IDA University of Colorado-Boulder

January 23, 2024

∗Zachary Szlendak is an economist at the Institute for Defense Analyses. Richard Mansfield is an assistant
professor at the University of Colorado-Boulder. We thank Terra McKinnish, Brian Cadena, Francisca
Antman, Allison Atteberry, Taylor Jaworski, Corey Woodruff, and Brachel Champion as well as seminar
participants at the Institute for Defense Analyses and CNA, the editor and two insightful but anonymous
referees for helpful comments and discussions. This research uses confidential data from the North Carolina
Education Research Data Center (NCERDC) at Duke University. We acknowledge the North Carolina
Department of Public Instruction and the NCERDC for collecting and providing this information. The
data can be requested via application through the NCERDC. The authors have no conflicts of interest to
disclose. Contact: zachszlendak@gmail.com, richard.mansfield@colorado.edu (corresponding author). JEL
codes: I21, I24, J24.

1



Appendix

A Theoretical Model
In this appendix we introduce a simple education production function and classroom sorting
equilibrium in order to formally derive a methodology for estimating the subgroup-specific
functions mapping honors shares f into expected achievement, E[∆Y q(f)], which are in-
puts required for the administrator’s problem (2). In the process, we also highlight the
assumptions our approach requires.

A.1 Test Score Production
Let Yistj capture the standardized test score of student i in course j taken at school s during
year t. We model the educational production function as follows:

Yistj = dhistjh(qistj, ϵistj|q⃗h, ϵ⃗h) + dristjr(qistj, ϵistj|q⃗r, ϵ⃗r) +XO
istjβ

O +XU
istjβ

U + µistj. (A.1)

The student’s choice of track is represented by the indicator variables dhistj and dristj, with
values of 1 signifying enrollment in honors and regular tracks, respectively. Schools that do
not offer separate tracks in a given course feature both dhistj = 0 and dristj = 0. The functions
h(qistj, ϵistj|q⃗h, ϵ⃗h) and r(qistj, ϵistj|q⃗r, ϵ⃗r) capture shifts in achievement from taking the hon-
ors and regular tracks, respectively. These shifts are functions of the student’s own inputs,
which are partly predictable based on the student’s observable subgroup qistj but also de-
pend on an unobservable idiosyncratic component ϵistj. ϵistj captures deviations in expected
performance due to, for example, accumulated skills or effort unaccounted for by subgroup.
Such deviations vary not just across students but within students across school-course-year
combinations. Importantly, the impact of the track choice on achievement also depends
on the peer environment within the chosen track, which is reflected in the dependence of
the functions h(·) and r(·) on the vectors (q⃗h, ϵ⃗h) and (q⃗r, ϵ⃗r) capturing the subgroups and
idiosyncratic contributions of other members of the honors and regular tracks. This flexible
formulation of track effects acknowledges that students’ production in the classroom will
be affected by how the material matches with their ability and how the peer environment
interacts with their own ability and effort. Track-specific teacher inputs and course rigor
are assumed to be functions of the kinds of students selecting into the track in a given
school-course-year, and thus are implicitly captured by the functions h(·) and r(·).

XO
istj and XU

istj capture other student, school, and course inputs that affect i’s learning
that observed and unobserved, respectively, while µistj captures measurement error that
causes the test score to fail to perfectly reflect the student’s learning in the chosen course.
Importantly, by imposing that these inputs are additively separable from the inputs that
enter the track-specific functions h(·) and r(·), we have assumed they have the same impact
on test scores regardless of track. This implicitly requires that the standardized tests used
to assess knowledge in each course do not depend on the track chosen, which is true in the
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North Carolina context we consider.1 While somewhat restrictive, the additive separability
assumption implies that these inputs are irrelevant to the administrator’s tracking problem.
Thus, we can rewrite achievement in terms of the difference between performance in the
chosen track and performance in a pooled version of the course with no tracks:

∆Yistj = dhistjh(qistj, ϵistj|q⃗h, ϵ⃗h) + dristjr(qistj, ϵistj|q⃗r, ϵ⃗r). (A.2)

Recasting achievement production this way facilitates a focus on the interactions between the
student and peer characteristics that are likely to be of primary importance. Note that this
formulation is nonetheless less restrictive than many linear specifications in the literature,
since it allows the impact of observed and unobserved student ability components q and ϵ to
depend on each other and on the choice of track.

A.2 A Simple Model of Student Track Choice
Now consider the student’s choice of honors vs. regular track in a course that features
only these two tracks. Suppose that each student chooses the track that maximizes his
or her test score net of track-specific effort costs, scheduling opportunity costs, and GPA
boosts. Let cistj capture student i’s idiosyncratic composite cost (measured in test-score
utility equivalents) of joining the honors track h relative to the regular track r at school s at
time t in course j. Next, let αstj capture a component of the composite cost of the honors
track that is common to all students in (s, t, j). Importantly, assume that the administrator
has the ability to shift αstj by any arbitrary amount by adjusting the relative GPA boost or
homework load in the honors track.

The student’s track choice can thus be written as:

dhistj =


1, if h(qistj, ϵistj|q⃗h, ϵ⃗h)− r(qistj, ϵistj|q⃗r, ϵ⃗r)︸ ︷︷ ︸

Difference in academic gains

−cistj − αstj︸ ︷︷ ︸
Effort, convenience,

and grade cost

> 0

0, otherwise

Note that because we allow a student’s unobserved ability to differentially affect their
academic performance in the honors versus the regular track, we are accommodating the
possibility that students may select into courses based on unobserved ability to benefit.
Along with peer effects, such “selection on gains” generally complicate efforts to extrapolate
from track impacts on marginal students to broader average treatment effects of interest.
We show here that peer effects and selection on unobserved gains need not undermine the
ability to estimate the key inputs to the administrator’s tracking problem.

Next, let gstj(ϵ, c|q) denote the cohort’s joint conditional distribution of students’ unob-
served ability components and idiosyncratic effort/scheduling costs for any given subgroup
q. To simplify notation, we assume that the school cohorts in consideration are large enough
and the ability groups are few enough to approximate gstj(ϵ, c|q) for each q with a continuous
1Furthermore, administrator, parent, and student preferences for high scores help ensure that the curricula
for the two tracks do not diverge too far from one another.
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joint density. Then we can define α∗
stj(f) as the threshold common cost component α∗

stj that
causes a fraction f of students in the chosen school-year-course to choose the honors track.
Specifically, α∗

stj(f) is implicitly defined as the solution to the following equation:2

∑
q

Wstq

∫∫
dhistj(αstj, q, q⃗h(αstj), q⃗r(αstj), ϵ, c)gstj(ϵ, c|q)dϵdc = f. (A.3)

Next, we assume that the composition of students across schools, years, and courses is
very similar among a large subset S of school-year-course combinations:

Assumption 1. gstj(ϵ, c|q) ≈ g(ϵ, c|q) ∀q ∀(s, t, j) ∈ S and Wstjq ≈ Wq ∀ (s, t, j) ∈ S

Under Assumption 1, as courses become large the threshold cost function α∗
stj(f) becomes

common among sufficiently similar schools and course-year combinations within schools:
α∗
stj(f) ≈ α∗(f) for all (s, t, j) ∈ S. Furthermore, because the conditional distribution

g(ϵ, c|dh, q) also becomes common, the vectors of track-specific peers (q⃗r, ϵ⃗r) and (q⃗h, ϵ⃗h) also
depend only on f (through α∗(f)) rather than separately on s, t, or j. This in turn implies
that h(qistj, ϵistj|q⃗h, ϵ⃗h) ≈ h(qistj, ϵistj|fstj) and r(qistj, ϵistj|q⃗r, ϵ⃗r) ≈ r(qistj, ϵistj|fstj). It also
implies that the subgroup-specific probability of choosing honors depends only on f :

P (dh = 1|qistj = q, f) =

∫∫
dh(α∗(f), ϵ, c, q)g(ϵ, c|qistj = q)dϵdc (A.4)

Thus, the implicit choice of f by the administrator (through α∗(f)) can serve as a
sufficient statistic for the peer composition of both the honors and regular tracks in all
school-year-course combinations where this common joint distribution of ability and costs
represents a sufficiently close approximation. Essentially, this assumption rules out hetero-
geneous treatments across schools or courses for the same honors fraction, so that differences
in achievement distributions across schools or courses featuring different honors fractions can
be interpreted as (possibly heterogeneous) treatment effects.

In our empirical work, we attempt to make this approximation plausible by 1) removing
schools from our sample whose students exhibit a distribution of past performance on state
exams that is too far from the state norm, and 2) controlling for the shares and mean test
scores of students in the chosen school-year-course with predicted test scores in each decile of
the statewide predicted distribution, interacted with the student’s own quintile of predicted
performance.

Note that Assumption 1 is sufficient but not necessary for the fraction in honors to serve
as a sufficient condition for peer environment. Suppose, for example, that each student’s
relative performance across tracks depends only on the tracks’ relative peer quality rather
than separately on the absolute peer quality in each track. Then estimates of tracking effects
may be unbiased even if comparisons are made between schools or school-year-courses with
2Note that since dhistj depends on αstj both directly and indirectly through the peer vectors q⃗h(αstj), ϵ⃗h(αstj),
we must assume that the track-specific achievement functions h(·) and r(·) are sufficiently insensitive to small
changes in peer composition that the fraction choosing honors is monotonically and smoothly decreasing in
αstj for each q and spans a large range of fractions for feasible administrator choices of αstj . This ensures
that there exist unique solutions to equation A.3 for a wide range of f values.
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different baseline student quality distributions, as long as these units would feature the same
peer quality differences across tracks if they chose the same honors fraction f and controls
for the direct achievement effects of cohortwide quality distributions are included (as they
are in our empirical work).

Even if the distributions g(ϵ, c|q) are roughly common among schools, however, they
may not be known by any school administrator, since both ϵ and c are unobserved for
each student. Thus, any given principal will have a difficult time inferring both g(ϵ, c|q)
and the track-specific achievement functions h(q, ϵ|f) and f(q, ϵ|f) from data on student
performance.

Note, though, that the administrator’s problem (1) only requires as inputs E[∆Y q(f)],
the subgroup-specific mean test score performance gains relative to a trackless course as
functions of the honors fraction f . Thus, we can exploit the fact that E[∆Y q(f)] can be
written as a simple weighted average of the expected track-specific performance of the subsets
of group q that sort into the honors and regular tracks, respectively:

E[∆Y q(f)] = P (dh = 1|q, f)E[h(q, ϵ|f)|dh = 1] + P (dr = 1|q, f)E[r(q, ϵ|f)|dr = 1] (A.5)

Since the conditional expectation functions E[h(q, ϵ|f)|dh = 1] and E[r(q, ϵ|f)|dr = 1]
in (A.5) depend only on g(ϵ, c|q), dh(α∗(f), ϵ, c, q), h(q, ϵ|f), and r(q, ϵ|f), which are them-
selves determined by f through α∗(f), E[∆Y q(f)] only depends on the school, course, and
year through the administrator’s choice of f .3 Since the objects E[h(q, ϵ|f)|dh = 1] and
E[r(q, ϵ|f)|dr = 1] are means of performance among selected samples of students sorting
into each track (partly on the basis of unobserved ability ϵ), they are not objects of interest
in their own right, and they do not allow the recovery of the full structural functions h(q, ϵ|f)
r(q, ϵ|f) without much stronger assumptions on either h(∗) and r(∗) or g(ϵ, c|q). However,
the above progression makes clear that as long as g(ϵ, c|q) and Wq are roughly stable for each
q across courses and time, identification of the structural functions is unnecessary to solve
the administrator’s problem.

Essentially, one can simply aggregate over the student-level choice of track, utilizing the
fact that every student must choose some track, and compare mean outcomes of students
in the same subgroup across schools, cohorts, or courses featuring different administrator
choices of f to identify the conditional expectation functions E[Y q(f)] for each subgroup q.
Importantly, these functions capture not only the achievement gains or losses from students
who have their track choice altered through changes to α∗

f but also how changing f alters
the peer effects and level of instruction experienced by other members of the subpopulation.
3E[h(q, ϵ|f)|dh = 1] and E[r(q, ϵ|f)|dr = 1] are defined by:

E[h(q, ϵ|f)|dh = 1] =

∫∫
dh(α∗(f), ϵ, c, q)h(q, ϵ|f)g(ϵ, c|q)dϵdc∫∫

dh(α∗(f), ϵ, c, q)g(ϵ, c|q)dϵdc
and (A.6)

E[r(q, ϵ|f)|dr = 1] =

∫∫
dr(α∗(f), ϵ, c, q)r(q, ϵ|f)g(ϵ, c|q)dϵdc∫∫

dr(α∗(f), ϵ, c, q)g(ϵ, c|q)dϵdc
(A.7)
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Appendix Tables

Table A1: Estimates of the Parameters {γ} Governing the Quintile-Specific
Treatment Effect Functions of the Honors Enrollment Share E[∆Y q(f)] for

the Baseline and Alternative Specifications
(1) (2) (3) (4)

Quintile 5-Linear Coefficient 0.528 0.408 0.742 0.343
(0.125) (0.117) (0.204) (0.126)

Quintile 4-Linear Coefficient 0.279 0.130 0.503 0.062
(0.107) (0.098) (0.190) (0.109)

Quintile 3-Linear Coefficient 0.248 0.096 0.479 0.076
(0.104) (0.097) (0.185) (0.108)

Quintile 2-Linear Coefficient 0.228 0.071 0.458 0.053
(0.100) (0.093) (0.185) (0.104)

Quintile 1-Linear Coefficient 0.273 0.138 0.526 0.080
(0.106) (0.103) (0.201) (0.110)

Quintile 5-Squared Coefficient -1.169 -0.921 -1.708 -0.760
(0.342) (0.319) (0.601) (0.357)

Quintile 4-Squared Coefficient -0.556 -0.215 -1.030 -0.029
(0.299) (0.269) (0.578) (0.309)

Quintile 3-Squared Coefficient -0.495 -0.141 -1.179 -0.104
(0.286) (0.258) (0.563) (0.302)

Quintile 2-Squared Coefficient -0.618 -0.234 -1.231 -0.227
(0.277) (0.252) (0.560) (0.292)

Quintile 1-Squared Coefficient -1.011 -0.645 -1.882 -0.541
(0.309) (0.285) (0.623) (0.311)

Quintile 5-Cubic Coefficient 0.611 0.503 1.007 0.391
(0.241) (0.230) (0.440) (0.258)

Quintile 4-Cubic Coefficient 0.266 0.087 0.543 -0.043
(0.214) (0.199) (0.428) (0.229)

Quintile 3-Cubic Coefficient 0.269 0.076 0.747 0.058
(0.205) (0.188) (0.413) (0.220)

Quintile 2-Cubic Coefficient 0.408 0.188 0.791 0.196
(0.198) (0.185) (0.410) (0.214)

Quintile 1-Cubic Coefficient 0.769 0.544 1.396 0.483
(0.233) (0.213) (0.462) (0.233)

Observations 170757 170757 139345 169419
School FEs NO YES NO YES
Lagged IV NO NO YES NO
Class Share IV NO NO NO YES
Notes: Robust standard errors clustered at the school level are in parentheses. ‘School FEs’ :
A full set of school fixed effects is included. ‘Lagged IV’ uses honors enrollment share two years
prior (and its square and cube) as instruments for its contemporary counterparts in the chosen
school-year-course. ‘Class Share IV’: instruments for the current course’s honors enrollment
share (and its square and cube) using its honors classroom share (and its square and cube).
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Table A2: Estimates of the Parameters {γ} Governing the Quintile-Specific
Treatment Effect Functions of the Honors Enrollment Share E[∆Y q(f)] for

Several Specifications Testing Robustness to Functional Form and
Endogeneity Assumptions

(1) (2) (3) (4) (5) (6)

Quintile 5-Linear Coefficient 0.454 0.819 0.390 0.341 0.522 0.399
(0.103) (0.219) (0.121) (0.124) (0.137) (0.116)

Quintile 4-Linear Coefficient 0.140 0.342 0.115 0.048 0.160 0.121
(0.090) (0.206) (0.105) (0.107) (0.121) (0.098)

Quintile 3-Linear Coefficient 0.050 0.223 0.062 0.068 0.109 0.092
(0.089) (0.192) (0.105) (0.107) (0.112) (0.096)

Quintile 2-Linear Coefficient 0.037 0.181 0.031 0.067 0.136 0.064
(0.085) (0.183) (0.101) (0.108) (0.110) (0.094)

Quintile 1-Linear Coefficient 0.081 0.329 0.072 0.061 0.185 0.119
(0.094) (0.210) (0.108) (0.117) (0.117) (0.102)

Quintile 5-Squared Coefficient -1.010 -1.675 -0.895 -0.813 -1.197 -0.882
(0.279) (0.607) (0.334) (0.343) (0.365) (0.315)

Quintile 4-Squared Coefficient -0.215 -0.368 -0.183 -0.017 -0.325 -0.182
(0.243) (0.579) (0.291) (0.292) (0.322) (0.269)

Quintile 3-Squared Coefficient -0.000 -0.272 -0.084 -0.093 -0.226 -0.123
(0.236) (0.519) (0.281) (0.290) (0.296) (0.257)

Quintile 2-Squared Coefficient -0.133 -0.300 -0.166 -0.298 -0.397 -0.205
(0.224) (0.508) (0.276) (0.288) (0.296) (0.252)

Quintile 1-Squared Coefficient -0.491 -1.046 -0.515 -0.518 -0.824 -0.605
(0.254) (0.594) (0.293) (0.328) (0.327) (0.283)

Quintile 5-Cubic Coefficient 0.556 0.856 0.493 0.461 0.680 0.473
(0.187) (0.410) (0.243) (0.244) (0.261) (0.227)

Quintile 4-Cubic Coefficient 0.075 0.026 0.063 -0.024 0.179 0.062
(0.164) (0.392) (0.217) (0.208) (0.234) (0.199)

Quintile 3-Cubic Coefficient -0.050 0.049 0.047 0.068 0.150 0.063
(0.158) (0.351) (0.204) (0.207) (0.216) (0.187)

Quintile 2-Cubic Coefficient 0.096 0.119 0.157 0.270 0.298 0.165
(0.149) (0.346) (0.203) (0.206) (0.219) (0.185)

Quintile 1-Cubic Coefficient 0.410 0.717 0.477 0.481 0.712 0.517
(0.171) (0.409) (0.213) (0.246) (0.249) (0.209)

Observations 170757 170773 170863 169419 128005 170757
School FEs YES NO NO NO YES YES
Constrained Coefficients YES YES NO NO NO NO
Other Course IV NO YES NO NO NO NO
School-Year FEs NO NO YES NO NO NO
School-Course FEs NO NO NO YES NO NO
Class Share IV NO NO NO YES NO NO
Restricted School Set NO NO NO NO YES NO
Augmented Controls NO NO NO NO NO YES
Notes: Robust standard errors clustered at the school level are in parentheses. ‘Constrained Coefficients’: Cubic
coefficients are restricted so that the treatment effect function equals zero at an honors enrollment share of 1 as well
as 0. ‘Other Course IV’ uses the contemporaneous honors enrollment share (and its square and cube) in the other
tested courses in the same school-year as instruments for the share and its square and cube in the chosen course.
‘Class Share IV’: instruments for the current course’s honors enrollment share (and its square and cube) using its
honors classroom share (and its square and cube). ‘Restricted School Set’: the sample is restricted to schools featuring
a distribution of preparedness quintiles such that at most .33 quintile shifts per student are required on average to
match the statewide uniform distribution. ‘Augmented Controls’: includes additional controls for free/reduced price
lunch eligibility, sets of indicators for various learning disabilities and teacher education categories, and school-average
math scores. 7



Appendix Figures

Figure A1: Confirming the Absence of Floor and Ceiling Effects - The 2006
Distribution of Pre-Standardized Scale Scores for the Sample Courses

Notes: Each histogram depicts the distribution of pre-standardized student scale scores for a sep-
arate course included in the final sample for the year 2006. The histograms confirm the absence
of bunching near the ceiling or floor of the test score range. Other years display extremely similar
distributions.
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Figure A2: The Distribution of Enrollment Shares for the Remedial Track

Notes: This figure depicts the fraction of students in the remedial track for school-year-courses
from the baseline sample in which a remedial track exists. Fewer than 4% of school-year-courses in
the sample contain a remedial track.
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Figure A3: Assessing the Validity of Assumption 1 - The Distribution of
School-Specific Deviations from the Statewide Composition of Student

Predicted Performance

(a) School-Weighted Distribution

(b) Student-Weighted Distribution

Notes: This figure displays the school-weighted (Panel A) and student-weighted (Panel B) dis-
tributions among high schools of the average number of quintiles of an index of predicted test
score performance by which the school’s students would need to be shifted to match the statewide
(uniform) distribution of student predicted performance quintiles. Larger values indicate that the
school’s student population is more atypical.
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Figure A4: The Distribution of Student Predicted Performance Quintiles
for the Schools on the Margin of Sample Inclusion

(a) 0.5 Quintile Shifts/Student

(b) 0.33 Quintile Shifts/Student

Notes: Figure (a) displays the distribution of students classified by statewide quintile of a regression
index of predicted test scores for the six schools with the highest deviations from the statewide
(uniform) distribution of quintiles that still qualified for the baseline sample (0.5 required quintile
shifts per student on average to reach the uniform distribution). Figure (b) plots the distributions
for the six marginal schools when the standard is lowered to one-third quintile shifts per student.
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Figure A5: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - Estimating Quintile-Specific

Treatment Effects Separately by 20% Interval of Honors Enrollment Share

Notes: The first five graphs plot estimates of the function E[∆Y q(f)] that maps the coursewide
honors enrollment share into expected standardized test performance by quintile of predicted per-
formance for a school FE specification that replaces the baseline cubic polynomial with interactions
between indicators for student preparedness quintile and indicators for whether the current course’
honors share falls in a particular interval of width 0.2 (with the last two intervals combined due to
minimal support). The bottom right graph in each panel displays the density of honors enrollment
shares for the chosen sample. 90% pointwise confidence intervals computed using the delta method
are displayed with solid lines. The figures rely on the baseline sample of school-year-course-quintile
observations (See Section 3.1 for details).
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Figure A6: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - Restricted Cubic Specification

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for a school FE specification that restricts the value of the treatment effect to be zero at the right
end of the unit interval in addition to the left end in order to capture the idea that 100% of students
in the honors track also represents an absence of meaningful tracking. 95% pointwise confidence
intervals computed using the delta method are displayed with dashes. The bottom right graph in
each panel displays the density of honors enrollment shares for the chosen sample. The figures rely
on the baseline sample of school-year-course-quintile observations (See Section 3.1 for details).
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Figure A7: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - Discontinuity Permitted at a Zero

Honors Enrollment Share

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for a school FE specification that also includes a separate indicator for whether the course features
any tracking. This ensures that predicted values at low enrollment shares are not affected by
performance in untracked schools or courses. 95% pointwise confidence intervals computed using
the delta method are displayed with dashes. The bottom right graph in each panel displays the
density of honors enrollment shares for the chosen sample. The figures rely on the baseline sample
of school-year-course-quintile observations (See Section 3.1 for details).
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Figure A8: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - Quartic Specification

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors en-
rollment share into expected standardized test performance by quintile of predicted performance for
a school FE specification that parameterizes the treatment effect function as a quartic rather than
cubic polynomial. 95% pointwise confidence intervals computed using the delta method are dis-
played with dashes. The bottom right graph in each panel displays the density of honors enrollment
shares for the chosen sample. The figures rely on the baseline sample of school-year-course-quintile
observations (See Section 3.1 for details).
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Figure A9: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - Using the Mean Share of Honors

Classrooms in Other Courses in the Same School-Year as an Instrument for
the Honors Enrollment Share

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for a specification in which the current course’s honors enrollment share is instrumented with the
mean share among other courses in the same school-year combination. 95% pointwise confidence
intervals computed using the delta method are displayed with dashes. The bottom right graph in
each panel displays the density of honors enrollment shares for the chosen sample. The figures rely
on the baseline sample of school-year-course-quintile observations (See Section 3.1 for details).
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Figure A10: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - School-Year Fixed Effects

Specification

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for a specification that augments the baseline specification by including a set of school-year fixed
effects. 95% pointwise confidence intervals computed using the delta method are displayed with
dashes. The bottom right graph in each panel displays the density of honors enrollment shares for
the chosen sample. The figures rely on the baseline sample of school-year-course-quintile observa-
tions (See Section 3.1 for details).
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Figure A11: Testing Robustness to Alternative Functional Forms for the
Treatment Effect Functions E[∆Y q(f)] - Combining the Class Share IV

with School-Course Fixed Effects

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for a specification in which the current course’s share of enrollment in the honors track (and its
square and cube) are instrumented with the course’s share of honors classrooms (and its square and
cube) and a full set of school-course fixed effects are included. 95% pointwise confidence intervals
computed using the delta method are displayed with dashes. The bottom right graph in each panel
displays the density of honors enrollment shares for the chosen sample. The figures rely on the
baseline sample of school-year-course-quintile observations (See Section 3.1 for details).
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Figure A12: Testing Robustness of the Treatment Effect Functions
E[∆Y q(f)] to Additional Controls - Low Income and Learning Disability

Indicators, and Teacher Education Category Shares

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for a school fixed-effects specification that uses an augmented set of controls that includes a common
but coarse administrative indicator for low parental income, indicators for various forms of learning
disabilities, and shares of the teachers in the chosen school-course year who received bachelor’s,
master’s, professional, and PhD degrees. 95% pointwise confidence intervals computed using the
delta method are displayed with dashes. The bottom right graph in each panel displays the density
of honors enrollment shares for the chosen sample. The figures rely on the baseline sample of
school-year-course-quintile observations (See Section 3.1 for details).
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Figure A13: Testing Robustness to Violations of Assumption 1 -
Specification Featuring a Restricted Sample of Schools with More Typical
Distributions of Predicted Student Performance Based on Middle School

Performance

Notes: This figure plots estimates of the function E[∆Y q(f)] that maps the coursewide honors
enrollment share into expected standardized test performance by quintile of predicted performance
for the school fixed-effects specification but using an alternative sample that restricts the set of
schools to those where the average student would need to shift their quintile of the preparedness
index by less than 1/3 in order for the school to match the statewide (uniform) distribution of
quintiles. 95% pointwise confidence intervals computed using the delta method are displayed with
dashes. The bottom right graph in each panel displays the density of honors enrollment shares for
the chosen sample.
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