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Appendix A: Additional figures and tables
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Figure 1. Total fertility rate by year
Notes: The figure plots the total fertility rate calculated for each year. The total fertility rate is the
number of children each woman would have if she were to live through her childbearing years and have
children in accordance with contemporaneous age-specific fertility rates. These data come from various
years of the Population and Vital Statistics Report of the United Nations Statistical Division
(http://unstats.un.org/unsd/demographic/products/vitstats/default.htm).
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Figure 2. Cohort size by month of birth
Notes: The figure uses 1992 census data to plot the number of children born each month. June of 1990 is
normalized to zero, and the vertical line indicates the demarcation between June and July of 1990.

Figure 3. Infant mortality and fetal death rates by year of birth

Notes: The infant mortality rate and the fetal death rate are from the Romanian Demographic Yearbook
(1996).
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Figure 4. Low birthweights by year of birth

Notes: All data are from the Romanian Demographic Yearbook (1996).
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Figure 5. Proportion of births by month in admissions cohorts
Notes: This figure uses 1992 census data to plot the proportion of children born in each month. The first
group is children born in 1990 present in the 2005 high school admission cohort. The second group is
children born in 1991 present in the 2006 admission cohort.

Figure 6. Distribution across cutoffs
Notes: This figure plots the interaction effects between access to abortion (AccessAi) and access to a
better school (AccessBi) by tercile of the school quality distribution (parametrized by the transition scores
of the cutoff for entry to each school) as vertical bars for each of the four specifications associated with our
abortion models. It also plots the main effects of access to a better school (AccessBi) by tercile of the
school quality distribution for children who were born in 1990 before and after access to abortion as the
dotted and solid lines respectively.
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Table 1. Descriptive statistics: All towns and survey towns

Mean S.D. N Mean S.D. N
Panel A:  All towns:
Panel A.1:  Individual level 
Transition score 8.14 0.87 105,737 8.26 0.87 92,772
Baccalaureate taken 0.83 0.38 105,737 0.85 0.36 92,772
Baccalaureate grade 8.73 0.78 79,873 8.02 1.08 69,945
Romanian Bacc. grade 7.48 1.59 87,383 7.80 1.33 78,243
Panel A.2:  Track level
Number of 9th grade students 53.9 40.4 1,963 52.4 37.0 1,771
Panel A.3:  School level 
Number of 9th grade students 129.4 70.6 817 118.5 63.4 783
Number of tracks 2.4 1.1 817 2.3 1.1 783
Panel A.4:  Town level
Number of 9th grade students 766.2 839.8 138 708.2 757.3 131
Number of schools 5.9 6.0 138 6.0 6.2 131
Number of tracks 14.2 12.5 138 13.5 12.0 131
Panel B:  Survey towns:
Panel B.1:  Individual level
Transition score 8.03 0.82 15,177 8.22 0.81 13,685
Baccalaureate taken 0.83 0.37 15,177 0.85 0.36 13,685
Baccalaureate grade 8.80 0.72 11,914 8.06 0.98 10,860
Romanian Bacc. grade 7.61 1.52 12,623 7.79 1.25 11,539
Panel B.2:  Track level
Number of 9th grade students 40.2 26.1 378 40.1 23.7 341
Panel B.3:  School level
Number of 9th grade students 115.0 67.1 132 109.5 62.3 125
Number of tracks 2.9 1.1 132 2.7 1.1 125
Panel B.4:  Town level
Number of 9th grade students 257.2 133.6 59 244.4 128.7 56
Number of schools 2.2 0.4 59 2.2 0.4 56
Number of tracks 6.4 2.1 59 6.1 2.1 56

High school admission cohort
2005 2006

Notes: This table uses the administrative data to describe two samples. Panel A describes the universe of
Romanian towns with two exceptions: i) towns that make up Bucharest, and ii) towns that contain a single
school. Panels A.1, A.2, A.3, and A.4 refer to characteristics at the student, track, school, and town level,
respectively. Panel B presents analogous information for the towns we targeted for surveying.
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Table 2. Interaction effects using between school cutoffs

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3. Interaction effects using between track cutoffs

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4. The effect of access to abortion on mothers’ characteristics

Notes: These regressions estimate specification (5) with maternal characteristics as outcome variables.
Standard errors are in brackets and are clustered by age in months. The abortion access dummy (AccessA)
equals 1 for mothers who gave birth on or after July 1, 1990, and equals 0 for mothers who gave birth on or
before June 30, 1990. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 5. Interactions controlling for non-poor status

Notes: These regressions implement specification (8). They are clustered at the student level and include
cutoff fixed effects, where the cutoffs are those between schools. Standard errors are in brackets. All panels
present reduced form specifications where the key independent variable is a dummy for the interaction of
access to abortion and access to a better school. Columns (1) and (3) restrict the sample to observations
within the Imbens and Kalyanaraman (2012) bounds, and columns (2) and (4) to those within the
Calonico et al. (2014) bounds. * p < 0.10, ** p < 0.05, *** p < 0.01.10



Appendix B: Identification Analysis

0.1. Notation. Let Di ∈ {0, 1} indicate whether student i was exposed to the abortion
reform, i.e. born on or after July 1st, 1990. Write Di = 1(Cohorti = 1 or Afteri = 1), where
Afteri indicates that i was born in the second half of their birth year (July-December), and
Cohorti indicates that i was in 2006 cohort (birth year 1991) rather than the 2005 cohort
(birth year 1990).1 We will often abbreviate the random variables Accessi and Cohorti as
Ai and Ci, respectively. The variable Di is referred to as AccessAi in the main text, but we
use Di here for brevity. Let Pi be i’s town. We refer to a student’s town/year pair (Pi, Ci)
as their “market”. A single market allocates students from a given cohort across the schools
in a given town.

Each town p contains a set of Zp + 1 schools z ∈ {0, 1, . . . Zp}, which we assume is stable
over the years 2005 and 2006. Let tpcz be the transition score threshold between schools z−1
and z in market (p, c),where the school indices are ordered in increasing order of tpcz within
a market (p, c) so that tpc1 ≤ tpc2 ≤ tpcZp . Out notation takes the ordinal ranking of schools
to be the same across the two years, so that within a given town p, a given value of z has the
same meaning in 2005 as it does 2006. Let Zi(x) = max{z : x ≥ tPi,Cohorti,z} be the “best”
school to which i is admitted as a function of transition score x, and let Xi denote student
i’s realized transition score (denoted scorei in the main text). Since the transition score of a
given student may be affected by abortion access Di, let us write Xi = Xi(Di), where Xi(0)
and Xi(1) denote counterfactual transition scores depending on abortion access. Student i’s
“assigned” school Zi (denoted schooli in the main text) is Zi = Zi(Xi).

For a generic outcome variable Y , let Yi(d, z) indicate potential outcomes as a function
of access to abortion d and high school assignment z. If students attend the most selective
school to which they are admitted, then the z appearing in Yi(d, z) denotes the school that i
actually attends. However, we focus on identifying intent-to-treat effects, without assuming
this.2

0.2. Identification. To combine the DD and RDD sources of identification, we need to
exploit variation in transition scores jointly with variation in groups that determine eligibility
for the abortion reform. This requires making assumptions about the distribution of potential
outcomes conditional on both types of variables.

We begin with the following continuity assumption on potential outcomes, which leads to
RDD identification:

Assumption 1 (continuity). E[Yi(d, z)|Pi = p,Afteri = a, Cohorti = c,Xi(d) = x] is
a continuous function of counterfactual transition score x, for any school z and for either
counterfactual value of abortion access d ∈ {0, 1}, as well as b, c ∈ {0, 1} and town p.
1Note that Afteri = 1− beforei, where beforei was introduced in Section 4.
2In the main text, we describe the schools as being ordered by their average transition score, rather than
by their minimum score (the threshold tpcz). In that notation, a next-best school treatment effect like
Yi(d, z)−Yi(d, z−1) captures the effect of being assigned to the zth worst school rather than the z−1thworst
school, when schools are ranked according to their average transition score. When schools are instead ordered
by their minimum transition score, Yi(d, z)− Yi(d, z− 1) captures the effect of having access to the zth least
selective school rather than the z − 1th least selective one. This is what is picked up by RDD estimands
that use discontinuities at the transition score threshold between two schools, and we thus in this appendix
take the notation z to refer to the ordering by minimum transition score. In practice, the two orderings are
nearly the same.
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Let ηz(a, c, p) denote the observable discontinuity in the conditional expectation E[Yi|Pi =
p,Ai = a, Ci = c,Xi = x] at x = tpcz:
lim
x↓tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]− lim
x↑tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]

Under Assumption 1:
(1) ηz(a, c, p) = E[Yi(dac, z)− Yi(dac, z − 1)|Pi = p,Afteri = a,Cohorti = c,Xi(dac) = tpcz]
where dac := 1− (1− a)(1− c) is the abortion treatment value for group a, c, identifying a
local average treatment effect of moving from school z− 1 to school z, among students with
scores around tpcz in town p and in abortion-reform group a, c.

Now let us turn to the DD source of identification. We make the following parallel trends
assumption:
Assumption 2 (parallel trends). For any schools z and z′ in town p:
E[Yi(1, z′)|p, 1, 1, tp1z]− E[Yi(1, z′)|p, 0, 1, tp1z] = E[Yi(1, z′)|p, 1, 0, tp0z]− E[Yi(1, z′)|p, 0, 0, tp0z]

with the notation E[Yi(1, z′)|p, a, c, x] :=E[Yi(0, z′)|Pi = p,Ai = a, Ci = c,Xi(1) = x].

Assumption 2 says that among students who would be just admitted to school z in their
cohort given the abortion treatment (Xi(1) = tpCiz), the difference in mean abortion-treated
outcomes Yi(1, z′) at school z′ between those born in the first and second halves of their
birth year is stable between the two cohorts. Given that we will combine this difference-
in-differences variation with the RDD variation between adjacent schools, we only actually
need Assumption 2 to hold for z′ = z and z′ = z − 1, but we state the assumption generally
here for ease of notation.

Note that while the canonical two-group, two-period difference-in-differences setup con-
siders a treatment that “turns on” in a later period for one group (while remaining “off”
for the other group), ours is a setup in which treatment turns on for one group in a “later”
period, and is always on for the second group. In our setting the group for whom treatment
changes are students in the 2005 cohort, and “later" refers to students born in the months
July-December. Accordingly, while parallel trends assumptions are typically phrased as
an assumption about differences in untreated outcomes, ours concerns differences in treated
outcomes between cohorts.3

Accordingly, Assumption 2 also conditions on a student’s treated transition score Xi(1),
rather than their untreated transition score Xi(0) or their realized transition score Xi. The
potential outcome Xi(1) is a baseline characteristic of students that is not itself affected by
the abortion treatment (see Caetano et al. 2022 for a similar parallel-trends assumption in DD
models with time-varying covariates). We evaluate Xi(1) at the cohort-specific thresholds
tpcz to allow for changes in transition scores across years, which could change the composition
of students with an Xi(1) equal to any particular value x in a given cohort.

The important implication of Assumption 2 is that it allows us to impute certain means of
abortion-treated outcomes among the students that are not exposed to the abortion-reform,
which is a counterfactual quantity. For example:

3 There is no fundamental conceptual difference: our setup is equivalent to the canonical one if one defines
“treatment” to be a lack of access to abortion, and one swaps the labels of the before and after periods.
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E[Yi(1, z)|Pi = p,Di = 0, Xi(1) = tp0z] = {E[Yi|Pi = p,Ai = 1, Ci = 0, Xi = tp0z]
+E[Yi|Pi = p,Ai = 0, Ci = 1, Xi = tp1z]− E[Yi|Pi = p,Ai = 1, Ci = 1, Xi = tp1z]}

Together with Assumption 1 this leads to our central result that combines RDD and DD
variation to identify interaction effects:

Proposition 1. Under Assumption 1 and 2, for each school z in town p:
E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Di = 0, Xi(1) = tp0z] = ηz(1, 0, p) + ηz(0, 1, p)− ηz(1, 1, p)

and
E[Yi(0, z)− Yi(0, z − 1)|Pi = p,Di = 0, Xi(0) = tp0z] = ηz(0, 0, p)

Proof. See Appendix C.

Since ηz(a, c, p) is identified for each (a, c, p), both of the LHS quantities in Proposition 1 are
identified . Notice that the average school-effect we can identify from ηz(0, 0, p) conditions on
the event Xi(0) = tp0z while the effect we can identify from ηz(1, 0, p)+ηz(0, 1, p)−ηz(1, 1, p)
conditions on Xi(1) = tp0z. This is a form of the “bad-control” problem that arises because
our RDDs condition on a variable affected by the abortion reform (Angrist and Pischke,
2009). �

However, an apples-to-apples comparison can be constructed by averaging the two quan-
tities identified in Proposition 1 over the distributions of Xi(1) and Xi(0), respectively. This
allows us to identify the mean interaction effect within each town p:

∆p := E[{Yi(1, Zi)− Yi(1, Zi − 1)} − {Yi(0, Zi)− Yi(0, Zi − 1)} |Pi = p,Di = 0]
Since we can only identify E[Yi(d, z)− Yi(d, z − 1)|Pi = p,Di = 0, Xi(d) = x] for d ∈ {0, 1}
for values of x that are equal to school cutoffs tp0z,identifying ∆p is only possible if there is
sufficient variation in school cutoffs tp0z across schools, or under treatment effect homogeneity
assumptions. We go the former route and approximate these cutoffs as “dense“ in the support
X of Xi as in Bertanha (2020), i.e.

Assumption 3 (density of schools). Fix any p and x ∈ X . Then in any neighborhood of
x there exists a school cutoff tp0z.

Assumption 3 is best seen as an approximation, motivated by there being a school zxcp
with a transition score cutoff that is sufficiently close to any given x, for each market c, p.
Identification arguments will integrate over ηzxcp(a, c, p), as if there were school with a cutoff
exactly at x. This is justified under asymptotics in which we imagine the number of schools
growing to infinity along with our sample size, and assuming Riemann integrability of the
function ηzxcp(a, c, p) (see Bertanha 2020 for details). For concreteness, define zxcp to be the
school having the largest tpcz cutoff smaller than x (so that e.g. Zi(x) = zxCiPi

, and realized
treatment assignment is Zi = zXiCiPi

).
Our approach requires two further assumptions. Firstly, we must impute the distribution

of Xi(1)|Di = 0, Pi = p, which is a counterfactual quantity. To identify it from the data, we
impose a parallel trends assumption for treated transition scores:
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Assumption 4 (distributional parallel trends for the transition score). For all x
and p:

P (Xi(1) ≤ x|Di = 0, Pi = p) = F10p(x) + F01p(x)− F11p(x)

where we let Facp(x) := P (Xi ≤ x|Ai = a, Ci = c, Pi = p) denote the group-specific CDF of
observed transitions score Xi. While Assumption 4 may appear stronger than conventional
mean parallel trends (since it must hold for each value of x), Roth and Sant’Anna (2022)
show that distributional parallel trends holds if and only if mean parallel trends is robust to
monotonic transformations of the outcome variable (in this case, the transition score).

We require one final assumption:

Assumption 5 (no indirect effects). For each x and p, E[Yi(1, Zi(Xi(d)))−Yi(1, Zi(Xi(d))−
1)|Pi = p,Di = 0, Xi(1) = x] does not depend on d. Assumption 5 says that the abortion

reform d does not have indirect effects (on average) on the size of next-best-school treatment
effects via school assignment Zi(Xi(d)). There are two simple sufficient conditions under
which this will hold:

(1) if Zi(Xi(d)) does not depend on d, either because Xi(1) = Xi(0) or because changes
to transition score caused by the abortion reform do not push any students across a
school threshold,

(2) “linearity” in average school-assignment outcomes: that is E[Yi(1, z)−Yi(1, z−1)|Pi =
p,Di = 0, Xi(1) = x] does not depend on z (on average).

The first item above is quite plausible as an approximation, because the average effect
Xi(1) −Xi(0) of abortion access on transition scores is quite small in comparison with the
typical distance between subsequent school thresholds. The second item would hold in a
model in which Yi(1, z) is linear in a “dose” of school quality for school z (as in Bertanha
2020) and differences in school quality for adjacent schools is roughly constant along the
school ladder (within a town/cohort). In Section 5.5.3, we have described evidence that if
anything, Yi(1, z) appears to be convex in school index z, which implies that departures from
item 2 above would bias our estimates in the direction of finding positive interaction effects.

Now we can state our identification result for mean interaction effects ∆p in each town.

Proposition 2. Given assumptions 1-5, ∆p is identified as∫
dFX(1)|D=0,P=p(x)·

{
ηzx0p(1, 0, p) + ηzx0p(0, 1, p)− ηzx0p(1, 1, p)

}
−
∫
dFX(0)|D=0,P=p(x)·ηzx0p(0, 0, p)

where FX(0)|D=0,P=p(x) = FX|D=0,P=p(x) and FX(1)|D=0,P=p(x) is identified by Assumption 4.

Proof. See Appendix C.

Section 0.4 discusses how Proposition 2 can be implemented through regression (8), by
“stacking” the data across schools and then reweighting observations. �

0.3. What if abortion only matters via transition scores? Looking at the fully-
interacted regression (8), it might appear that by conditioning on transition score, we have
blocked the main channel by which abortion reform affects Baccalaureate scores. Thus, we
might expect the coefficient on AccessA ·AccessB in (8) to be zero, missing any interaction
effects, if transition scores mediate the impacts of abortion access.
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To make this critique precise, let us index potential outcomes by three arguments: Y(d, x, z),
where x indicates a transition score and d now indicates any additional impacts of abortion
access d on outcomes, with transition score x held fixed. The function Y is related to our
main potential outcomes notation by Y (d, z) = Y(d,Xi(d), z). To simplify notation, suppose
in what follows that there is just one town p. The mean interaction effect parameter ∆0 can
be decomposed as follows, combining both direct and indirect effects of the abortion reform:

∆0 =E[Yi(1, Xi(1), Zi)− Yi(1, Xi(1), Zi − 1)− Yi(0, Xi(0), Zi) + Yi(0, Xi(0), Zi − 1)|Di = 0]

=
∫
dFX(1)|D=0(x) · E[Yi(1, x, Zi)− Yi(1, x, Zi − 1)− Yi(0, x, Zi) + Yi(0, x, Zi − 1)|Di = 0, Xi(1) = x]︸ ︷︷ ︸

non-score interaction effects

+
∫ {

dFX(1)|D=0(x)− dFX(0)|D=0(x)
}
· {E[Yi(0, x, Zi)− Yi(0, x, Zi − 1)} |Di = 0, Xi(1) = x]︸ ︷︷ ︸

score-mediated interaction effects

+
∫
dFX(0)|D=0(x) · {E[Yi(0, x, Zi)− Yi(0, x, Zi − 1)|Di = 0, Xi(1) = x]

−E[Yi(0, x, Zi)− Yi(0, x, Zi − 1)|Di = 0, Xi(0) = x]}︸ ︷︷ ︸
reallocation effect

With the above notation, we can formalize the possibility that abortion access only affects
Baccalaureate scores Yi through transition scores. Call abortion-access “excludable” from
the outcome equation when Yi(d, x, z) = yi(x, z) for some function yi, i.e. potential outcomes
do not depend upon d, given x. If excludability holds for all students, then the first term
above is zero, and all interaction effects are mediated by changes to students’ transition
scores.

If the abortion reform affects the distribution of transition scores, this leads to a difference
between FX(1)|D=0 and FX(0)|D=0, making the second term in ∆0 generally non-zero. If
transition scores are furthermore correlated with individual heterogeneity in next-best-school
effects, the third term will also contribute. The third term shows that average interaction
effects can arise simply from changing which transition scores are assigned to which students,
even with the overall distribution of transition scores unchanged (a “reallocation” effect).

The basic approach described in the main text (equation 8) focuses on the first and third
terms above, because it does not account for changes in the distribution of transition scores
arising from the abortion reform. However, in Section 0.4 below we describe a way to
reweight the data before estimating equation (8) that allows it to capture all three terms, as
the estimand of Proposition 2 does.

To appreciate the role that reweighting will play in estimation, let us consider the basic
approach of Equation (8) and suppose for the moment that excludability holds and that
there are just two schools separated by a single threshold t (continuing with a single town
p). The coefficient on AccessA · AccessB in (8) then captures the difference-in-differences
of RDD estimates: ηz(1, 0) + ηz(0, 1) − ηz(1, 1) − ηz(0, 0). By Proposition 1, both ηz(0, 0)
and {ηz(1, 0) + ηz(0, 1) − ηz(1, 1)} yield different averages of the same quantity: yi(tz, z) −
yi(tz, z − 1). The former averages over students with Xi(0) = t while the latter averages
over students with Xi(1) = t. Thus our coefficient of interest differs from zero only via the
reallocation effect.

15



However, in actuality, regression (8) is not confined to such apples-to-oranges comparisons
because it aggregates over the many thresholds, which are spread throughout the transition
score distribution. Suppose for concreteness that the abortion reform has a homogeneous
effect on transition scores for all students, so that Xi(1) = Xi(0) + δ for some δ. Then when
comparing outcomes Yi(1, z) to Yi(0, z) among students having Xi(0) = tp0z, the proper
proper comparison group for investigating outcomes would be students for whom Xi(1) =
tp0z + δ, not those for whom Xi(1) = tp0z. When we stack the data across all thresholds as
described in the next section, these Xi(1) = tp0z + δ students contribute to the coefficient of
interest, along with the Xi(0) = tp0z students. The key requirement is that the weights that
regression (8) applies to the various ηzx0p(0, 0, p) and ηzx0p(1, 0, p)+ηzx0p(0, 1, p)−ηzx0p(1, 1, p)
coincide with dFX(0)|D=0,P=p(x) and dFX(1)|D=0,P=p(x) respectively, recovering Proposition 2.
The reweighting scheme described in the next section does so to ensure that the coefficient
on AccessA · AccessB identifies a meaningful average interaction effect parameter.

0.4. Stacked regression . We have seen in Proposition 2 that ∆p can be estimated by a
two-step procedure in which regression discontinuity estimates are computed for each school
z and town p, and then averaged over the empirical distribution of schools among abortion-
nontreated students, as well as an imputed counterfactual distribution. This procedure might
not be particularly efficient, since it involves running hundreds of separate RDD’s around
each separate cutoff tpcz.

The “stacked” approach presents an alternative to running such separate RDDs, by trans-
forming the data such that the average interaction effect across towns

∆0 = E[{Yi(1, Zi)− Yi(1, Zi − 1)} − {Yi(0, Zi)− Yi(0, Zi − 1)} |Di = 0]
can be estimated through a single run of regression (8). Specifically, we make ZPi

copies
of each observation i, where Zp + 1 is the number of schools in town p. In this expanded
dataset, let index ij denote the jth copy of the observation for student i, where j = 1 . . . ZPi

.
Then we define Xij to be Xi − tPiCij, the distance of i’s transition score to the cutoff for
school j in their town.4 Using this stacked dataset, we can now estimate common regressions
that condition on values of Xij (across the entire stacked dataset) rather than Xi − tpcz for
fixed p and z in the original dataset. For all other variables V , the value Vij = Vi appears in
“copy” j of row i.

Despite it’s appeal as an estimator, the stacked approach imposes a particular weighting
over the population that will generally not coincide with the parameter of interest ∆p for town
p. To see this, let us first consider a simplified case in which there is only one town p, and we
have Z copies of each observation i, where Z+ 1 is the number of schools. An observation of
our stacked dataset is a draw from the probability distribution P̃ (Aij) := 1

Z

∑Z
j=1 P (Ai(tj)),

where Aij = Ai(tj) is an event (like Xij = x) that depends on which threhold tj is being
used in that “copy” of the data, and P is the population distribution over students i.

4 Note that this strategy of normalizing of the running variable to a common scale is similar to the
“normalizing-and-pooling” strategy discussed by Cattaneo, Keele, Titiunik and Vasquez-Bare (2016) for
settings in which different subgroups of the population face different cutoffs of the running variable. In our
setting, all students within the same town instead face a common set of multiple cutoffs.

16



For example, the analog of our discontinuity parameter ηz(a, c) in the stacked approach
would become:
η̃(a, c) := lim

ε↓0
Ẽ[Yij |Aij = a,Cij = c,Xij = ε]− lim

ε↑0
Ẽ[Yij |Aij = a,Cij = c,Xij = ε]

= 1
fac(0)

Z∑
z=1

{
fX(tz|a, c) · lim

ε↓0
E[Yi|a, c,Xi = tz + ε]− fX(tz|a, c) · lim

ε↑0
E[Yi|a, c,Xi = tz + ε]

}

= 1
fac(0)

Z∑
z=1

fX(tz|a, c) · ηz(a, c)

where fac(ε) := ∑
z fX(tz + ε|a, c) and we have used continuity of fX(x|a, c). Echoing Lemma

1 of Cattaneo et al. (2016), the above reveals a weighted average of the parameter ηz(a, c)
across all the school thresholds indexed by z (see proof of Proposition 3 for a derivation).

Suppose for simplicity that fX(x|a, c) were the same over all values of a and c during the
post-reform era (i.e. dac = 1). Then, given our continuity and parallel trends assumptions,
the difference-in-differences η̃(1, 0) + η̃(0, 1) − η̃(1, 1) − η̃(0, 0) of η̃(a, c), captured by the
coefficient on AccessA · AccessB in (8) estimates:

Z∑
z=1

{
fX(tz|1)∑
z′ fX(tz′ |1) · E[Yi(1, z)− Yi(1, z − 1)|Di = 0, Xi(1) = t0z]

fX(tz|0)∑
z′ fX(tz′ |0) · E[Yi(0, z)− Yi(0, z − 1)|Di = 0, Xi(0) = t0z]

}
with the notation that fX(tz|0) = fX(tz|a = 0, c = 0) and fX(tz|1) = fX(tz|a, c) for the other
three values of (a, c). In the dense-schools limit (Assumption 3), the above sum becomes
an integral over the conditional distribution of transition scores X in each abortion-reform
state. What we seek, by contrast, is to average the second term in brackets above over the
distribution of Xi(0) conditional on Di = 0, while averaging the first term over the distri-
bution of Xi(1) again conditional on Di = 0. This can be accomplished by reweighing the
post-reform observations appropriately before equation (8) is estimated, so that fX(1)|D=0(tz)
appears where fX(tz|1) does in the expression above, mirroring Proposition 2.

When there are multiple towns, the weights required to obtain the correct averaging in
the stacked regression become somewhat more complicated. Proposition 3 shows that we
can nevertheless reweight the observations so that the coefficient on AccessA · AccessB in
Eq. (8), when applied to the stacked dataset, corresponds to a mean interaction effect:
∆0 = E[Yi(1, Zi) − Yi(1, Zi − 1) − Yi(0, Zi) + Yi(0, Zi − 1)|Di = 0] (which averages over all
towns p).

Proposition 3. Let Yij:= ωij ·Yi, where ωij = ωPi,j
Ai,Ci

and ωpzac := fac · P (Pi=p|Di=0)
P (Pi=p|Ai=a,Ci=c,Xi=tpcz) ·

∆F pz
ac

fX(tpcz |Ai=a,Ci=c) where fac := ∑
p′,z′ P (Pi = p′|Ai = a, Ci = c,Xi = tp′cz′)fX(tp′cz′ |Ai =

a, Ci = c),

∆F pzac =


F (tp0z|00p)− F (tp,0,z−1|00p) if a = c = 0
{F (tp0z|10p)− F (tp,0,z−1|10p)}+ {F (tp1z|01p)− F (tp,1,z−1|01p)}

−{F (tp1z|11p)− F (tp,1,z−1|11p)} if max(a, c) = 1
and F (x|acp) := P (Xi ≤ x|Ai = a, Ci = c, Pi = p). Then:

∆0 = η̃(1, 0) + η̃(0, 1)− η̃(1, 1)− η̃(0, 0)

Proof. See Appendix C. �
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The components of the weights appearing in Proposition 3 play intuitive roles. The ratio
of probabilities “undoes” the up-weighting of observations from large school districts in the
stacked sample. The ratio ∆F pz

ac /fX(tpcz|a, c) meanwhile “corrects” for the heterogeneous
weights which which a given school z appears in η̃(a, c) across values of (a, c) (whoch must
be equal for Assumption 2 to be employed). Finally fac simply reflects a normalization
within each (a, c) cell. In practice, implementing the weighting ωij = ωPi,j

Ai,Ci
requires two

non-parametric first-stage estimation problems. We use standard local polynomial regression
and kernel density estimators. Results of the reweighting estimator are presented in Table
8.
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Appendix C: Proofs
0.5. Proof of Proposition 1. First we prove Eq (14). By Assumption 1:
η(a, c, p) = lim

x↓tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]− lim
x↑tpcz

E[Yi|Pi = p,Afteri = a,Cohorti = c,Xi = x]

= lim
x↓tpcz

E[Yi(dac, Zi(x))|p, a, c,Xi(dac) = x]− lim
x↑tpcz

E[Yi(dac, Zi(x))|p, a, c,Xi(dac) = x]

= lim
x↓tpcz

E[Yi(dac, z)|p, a, c,Xi(dac) = x]− lim
x↑tpcz

E[Yi(dac, z − 1)|p, a, c,Xi(dac) = x]

=E[Yi(dac, z)− Yi(dac, z − 1)|Pi = p,Afteri = a,Cohorti = c,Xi(dac) = tpcz]

The second claim of Proposition 1 now follows immediately:
ηz(0, 0, p) = E[Yi(0, z)− Yi(0, z − 1)|Pi = p,Afteri = 1, Cohorti = 1, Xi(0) = tp0z]

For the first claim, we can rearrange terms and apply the parallel trends Assumption 2:
ηz(1, 0, p) + ηz(0, 1, p)− ηz(1, 1, p) = E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Afteri = 1, Cohorti = 0, Xi(1) = tp0z]

+ E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Afteri = 0, Cohorti = 1, Xi(1) = tp1z]
− E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Afteri = 1, Cohorti = 1, Xi(1) = tp1z]

=E[Yi(1, z)|Pi = p,Ai = 1, Ci = 0, Xi(1) = tp0z] + E[Yi(1, z)|Pi = p,Ai = 0, Ci = 1, Xi(1) = tp1z]
− E[Yi(1, z)|Pi = p,Ai = 1, Ci = 1, Xi(1) = tp1z]

− E[Yi(1, z − 1)|Pi = p,Ai = 1, Ci = 0, Xi(1) = tp0z]− E[Yi(1, z − 1)|Pi = p,Ai = 0, Ci = 1, Xi(1) = tp1z]
+ E[Yi(1, z − 1)|Pi = p,Ai = 1, Ci = 1, Xi(1) = tp1z]

= E[Yi(1, z)|Pi = p,Ai = 0, Ci = 0, Xi(1) = tp0z]− E[Yi(1, z − 1)|Pi = p,Ai = 0, Ci = 0, Xi(1) = tp0z]
= E[Yi(1, z)− Yi(1, z − 1)|Pi = p,Di = 0, Xi(1) = tp0z]

0.6. Proof of Proposition 2. With FX(1)|D=0,P=p(x) = P (Xi(1) ≤ x|Di = 0, Pi = p) in
hand, we can weight the abortion-treated and untreated groups from Proposition 1 according
to their respective measures, i.e. estimate:∫

dFX(1)|D=0,P=p(x) ·
{
ηzx0p

(1, 0, p) + ηzx0p
(0, 1, p)− ηzx0p

(1, 1, p)
}
−
∫
dFX|D=0,P=p(x) · ηzx0p

(0, 0, p)∫
dFX(1)|D=0,P=p(x) · E[Yi(1, zx0p)− Yi(1, zx0p − 1)|Pi = p,Di = 0, Xi(1) = x]

−
∫
dFX(0)|D=0,P=p(x) · E[Yi(0, zx0p)− Yi(0, zx0p − 1)|Pi = p,Di = 0, Xi(0) = x]∫

dFX(1)|D=0,P=p(x) · E[Yi(1, zx0p)− Yi(1, zx0p − 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]∫
dFX(1)|D=0,P=p(x) · E[Yi(1, Zi(Xi(1)))− Yi(1, Zi(Xi(1))− 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]

Note that when Di = 0, knowing that Xi(1) = x does not imply that Xi = x, so we cannot
replace zx0p in the first term above by Zi = Zi(Xi). This is where Assumption 5 helps. With
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it, we have:∫
dFX(1)|D=0,P=p(x) ·

{
ηzx0p

(1, 0, p) + ηzx0p
(0, 1, p)− ηzx0p

(1, 1, p)
}
−
∫
dFX|D=0,P=p(x) · ηzx0p

(0, 0, p)∫
dFX(1)|D=0,P=p(x) · E[Yi(1, Zi(Xi(0)))− Yi(1, Zi(Xi(0))− 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]∫
dFX(1)|D=0,P=p(x) · E[Yi(1, Zi − Yi(1, Zi − 1)|Pi = p,Di = 0, Xi(1) = x]

− E[Yi(0, Zi)− Yi(0, Zi − 1)|Pi = p,Di = 0]
E[Yi(1, Zi)− Yi(1, Zi − 1)− Yi(0, Zi + Yi(0, Zi − 1)|Pi = p,Di = 0] = ∆p

where in the second line we’ve replaced Zi(Xi(1)) with Zi(Xi(0)) = Zi.
0.7. Proof of Proposition 3. Consider a generic event Aij referring to student i in stacked
observation j. Given that we have ZPi

copies of each observation i, our population probability
distribution P̃ over stacked observations can be characterized by P̃ (Pij = p) = Zp·P (Pi=p)∑

p′ Zp′ ·P (Pi=p′)

and P̃ (Aij|Pij = p) := 1
Zp

∑Zp

j=1 P (Ai(tpCij)|Pi = p). Thus: P̃ (Aij) = ∑
p P̃ (Aij, Pij = p) =

1
Z̄

∑
p

∑Zp

j=1 P (Ai(tpCij), Pi = p) where Z̄ := ∑
p′ Zp′ · P (Pi = p′), for any event Ai(tpCij) that

depends on j only through the j-specific threshold tpCij. Let ∑pz be a shorthand for the
double sum ∑

p

∑Zp

z=1 over towns and then schools z within each town (z, which indexes
schools, now plays the role of j, which indexed stacked “observations” for a given student i.
Given that η̃(a, c) captures the discontinuity in the conditional expectation of Y at Xij = 0
with respect to the probability distribution P̃ , we can write:

η̃(a, c) := lim
ε↓0

∫
y · dF̃Y (y|Xij = ε, Aij = a,Cij = c)− lim

ε↑0

∫
y · dF̃Y (y|Xij = ε, Aij = a,Cij = c)

The first term e.g. is:

lim
ε↓0

∫
y · dF̃Y (y|Xij = ε, Aij = a,Cij = c) = lim

ε↓0

∫
y · ddεdP̃ (Yij · ωij ≤ y,Xij ≤ ε, Aij = a,Cij = c)

d
dε P̃ (Xij ≤ ε, Aij = a,Cij = c)

= lim
ε↓0

∫
y · ddε

∑
pz dP (Yi · ωPi,z

Ai,Ci
≤ y,Xi ≤ tpcz + ε, Ai = a,Ci = c, Pi = p)

d
dε

∑
pz P (Xi ≤ tpcz + ε, Ai = a,Ci = c, Pi = p)

= lim
ε↓0

∫
y ·
∑
pz

d
dεdP (Yi · ωpzac ≤ y,Xi ≤ tpcz + ε, Pi = p|Ai = a,Ci = c)∑

pz
d
dεP (Xi ≤ tpcz + ε, Pi = p|Ai = a,Ci = c)

= lim
ε↓0

∫
y ·
∑
pz P (Pi = p|a, c) ddεdP (Yi · ωpzac ≤ y,Xi ≤ tpcz + ε|a, c, p)∑

pz P (Pi = p|a, c) · fX(tpcz + ε|a, c, p)

= lim
ε↓0

1
f(ε|a, c) ·

∑
pz

P (Pi = p|a, c) · ωpzac ·
∫
y · d

dε
dP (Yi ≤ y,Xi ≤ tpcz + ε|a, c, p)

= lim
ε↓0

1
f(ε|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c) · fX(tpcz + ε|a, c, p) ·
∫
y · dP (Yi ≤ y|a, c, p,Xi = tpcz + ε)

where we let f(ε|a, c) denote the quantity ∑pz P (Pi = p|a, c) · fX(tpcz + ε|a, c, p), and we’ve
used a change of variables in the fifth equality.5 Now, using continuity of fX(x|Ai = a, Ci =
c, Pi = p) at tpcz, we can write the above as
5Quantities of the form

∫
y · dP (Y ≤ y,E) are understood as Riemann–Stieltjes integrals with respect to

P (Y ≤ y,E) viewed as a function of y, for a fixed event E.
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= 1
f(0|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c) · lim
ε↓0

fX(tpcz + ε|a, c, p) · lim
x↓tpcz

∫
y · dP (Yi ≤ y|a, c, p,Xi = x)

= 1
f(0|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c) · fX(tpcz|a, c, Pi = p) · lim
x↓tpcz

E[Yi|a, c, p,Xi = x]

= 1
f(0|a, c) ·

∑
pz

ωpzac · P (Pi = p|a, c,Xi = tpcz) · fX(tpcz|a, c) · lim
x↓tpcz

E[Yi|a, c, p,Xi = x]

Thus:
η̃(a, c) = 1

f(0|a, c) ·
∑
pz

ωpzac · P (Pi = p|Ai = a,Ci = c,Xi = tpcz) · fX(tpcz|Ai = a,Ci = c)

·
{

lim
x↓tpcz

·E[Yi|Ai = a,Ci = c, Pi = p,Xi = x] − lim
x↑tpcz

E[Yi|Ai = a,Ci = c, Pi = p,Xi = x]
}

=
∑
pz

ωpzac ·
P (Pi = p|Ai = a,Ci = c,Xi = tpcz) · fX(tpcz|Ai = a,Ci = c)∑

p′z′ P (Pi = p′|Ai = a,Ci = c,Xi = tp′cz′) · fX(tp′cz′ |Ai = a,Ci = c) · ηz(a, c, p)

=
∑
pz

wpzac · ηz(a, c, p)

where wpzac := ωpzac ·
P (Pi=p|Ai=a,Ci=c,Xi=tpcz)·fX(tpcz |Ai=a,Ci=c)∑

p′z′ P (Pi=p′|Ai=a,Ci=c,Xi=tp′cz′ )·fX(tp′cz′ |Ai=a,Ci=c)
and we have used that we

can rewrite f(0|a, c) = ∑
pz P (Pi = p|Ai = a, Ci = c,Xi = tpcz) · fX(tpcz|Ai = a, Ci = c).

Suppose that we chose ωpzac = 1 for all a, c, p, z, i.e. no re-weighting. Then we would have∑
pz w

pz
ac = 1, but the weights wpzac would be heterogeneous across a and c, preventing us

from leveraging the parallel-trends assumption for Y . Now suppose that we instead choose
ωpzac = f(0|ac)

P (Pi=p|Ai=a,Ci=c,Xi=tpcz)·fX(tpcz |Ai=a,Ci=c) · P (Pi = p|Di = 0) · ∆F pz
ac , where ∆F pz

ac is
as-defined in Proposition 3 . Using the distributional parallel trends assumption for the
transition score, note first that

∆F pzac =
{
FX(0)|00p(tp0z)− FX(0)|00p(tp0,z−1) if b = c = 0
FX(1)|00p(tp0z)− FX(1)|00p(tp0,z−1) otherwise

= FX(dac)|00p(tp0z)− FX(dac)|00p(tp0,z−1)

With the above choice of ωpzac we thus have that

η̃(a, c) =
∑
p

P (Pi = p|Di = 0)
Zp∑
z=1

∆F pzac · ηz(a, c, p)

=
∑
p

P (Pi = p|Di = 0)
Zp∑
z=1

{
FX(dac)|00p(tp0z)− FX(dac)|00p(tp0,z−1)

}
· ηz(a, c, p)

Therefore, in the dense-schools limit:

η̃(a, c) ≈
∑
p

P (Pi = p|Di = 0)
∫
dFX(dac)|D=0,P=p(x) · ηzx0p(a, c, p)

Finally, applying Proposition 2:
∆̃DD/RD = η̃(0, 1) + η̃(1, 0)− η̃(1, 1)− η̃(0, 0) ≈

∑
p

P (Pi = p|Di = 0) ·∆p = ∆0
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Appendix D: Conceptual framework

This appendix presents a conceptual framework for the interaction of family and school
environments based on the notion of dynamic complementarities.

Analyses of dynamic complementarities must explicitly account for the production of skills
at different stages of development. Cunha and Heckman (2007) formalize this by suggesting
the following technology for skill formation:

(2) θt+1 = ft (h, θt, It)
where θt is a vector of skills measured at time t, h stands for parental characteristics, and It
denotes parental investments in child skill made during period t. Expression (2) illustrates
that skill itself can be an input into the production of skill. Dynamic complementarity arises
when this takes the form of higher skill making investments more productive:

(3) ∂2ft (h, θt, It)
∂θt∂It

> 0.

0.8. School investments. Our focus is on the interaction between family and school en-
vironments; children can be the object of investments in both settings, with the relative
importance of the latter increasing with age. Since It refers to family investments, we aug-
ment (2) to include school investment, denoted S:

(4) θt+1 = ft (h, θt, It, St) .
Our setting provides arguably exogenous shocks to: (a) the stock of skills, θt, due to the

sudden increase in the ease of access to abortion, and (b) school investments, St, due to the
rules that govern access to better schools. Thus, if there is complementarity between these,
we should find:

(5) ∂2ft (h, θt, It, St)
∂θt∂St

> 0.

To be specific, we examine the effect of increased access to abortion on later skills. In
addition, we assess the effect of access to better schools. Finally, we estimate the reduced-
form interaction of these effects. We next consider how behavioral responses and changes in
composition affect the interpretation of these reduced-form interactions.

0.9. Behavioral responses. Parents may deliberately choose the human capital invest-
ments they direct towards their children (Becker, 1964). For instance, their investments may
respond to their children’s skill levels, and they may be crowded out or crowded in by school
investments:

It = gt(θt, St).
For example, if parents engage in compensatory behavior, investments may depend on the
skills children attain relative to their siblings. There is also evidence that parents can react
to the level of school inputs (e.g., Das et al., 2013, Del Boca, Flinn, and Wiswall, 2013), and
in our setting, Pop-Eleches and Urquiola (2013) show that children who just gained access
to better schools receive less homework-related parental help than children who just missed
doing so.
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We explore if such effects take place in a manner that would reinforce or weaken dynamic
complementarities. For example, suppose that parents who had easier access to abortion
(and whose children on average therefore have higher levels of skill as they transition into
high school) lower their effort by more in response to their child’s admission to a better
school:

(6) ∂2gt (h, θt, It, St)
∂θt∂St

< 0

Such an effect would lower the likelihood of finding reduced form evidence of dynamic com-
plementarity even if mechanisms such as those in (3) and (5) are operative. Note that our
estimates of behavioral responses may also be influenced by the elasticity of substitution
between parental investments across different periods. For example, if the repeal of the
abortion ban led to differences in parental investments that persist past early childhood and
continue after children enter high school, our behavioral responses capture any interaction
between these investments and those induced by the shock to school environments.

0.10. Composition effects. Testing for dynamic complementarities, as in (3), requires
exogenous variation in θt, which we claim the change in abortion policy provides. That said,
the manner in which this variation originates is relevant for the interpretation of our results.
To see this, it is useful to write the expression for θt+1 in recursive form by substituting in
for the stock of skills θt with all prior investments:

θt+1 = gt (I1...It, h, θ1)
where θ1 is a child’s initial level of skill. This illustrates three potential mechanisms by
which increasing access to abortion can affect skills: (i) prior parental investments I1...It−1,
(ii) parental characteristics, h, and (iii) initial skill endowments, θ1.

All three mechanisms are potentially relevant in our context. First, the repeal of the abor-
tion ban is likely to have led to fewer unwanted children and spurred parental investment.
This could arise if childbearing that does not occur at an optimal time affects women’s edu-
cational, marriage, or labor market decisions in ways that lower parental ability to invest in
children (Angrist and Evans, 1999, Goldin and Katz, 2002). Alternately, an undesired birth,
by raising lifetime fertility, could adversely impact child outcomes through quantity/quality
trade-offs (Becker and Lewis, 1973; Becker, 1981). Second, educational outcomes could be
affected by changes in the socioeconomic composition of women who carry pregnancies to
term, with the direction of the effect depending on which type of women are more likely to
use abortion as opposed to other methods of birth control. Specifically, if women of lower
socioeconomic status experienced the largest reductions in fertility when access to abor-
tion increased, children born after the liberalization would tend to have more advantaged
parents—a composition effect.6 Third, it is conceivable that increased access to selective
abortions resulted in children with better initial skill endowments (θ1) by giving parents
greater latitude in deciding which pregnancies to take to term based on factors like fetal
health (Grossman and Jacobowitz 1981; Joyce 1987; Grossman and Joyce 1990).

6 Ananat et al. (2006) suggest the possibility of another source of selection given that changing the cost
of abortion will also change pregnancy behavior. We assume that at least in the short period studied
immediately after the change in abortion regime, there are no changes in marginal pregnancies.
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The relevance of these mechanisms affects the interpretation of the impact of access to
abortion and its interaction with access to better schools. While we do not have data
on whether the repeal of the abortion ban led to more selective abortions, the screening
technology required for this was all but inaccessible for most expectant parents in 1980s
Romania. We expect that any differences in initial skill endowments are more likely to
reflect parental investments in-utero. In addition, we present evidence that composition,
at least in terms of observables, does not drive our findings. As a result, we argue that
the main channel through which increased access to abortion affected outcomes is parental
investment.
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