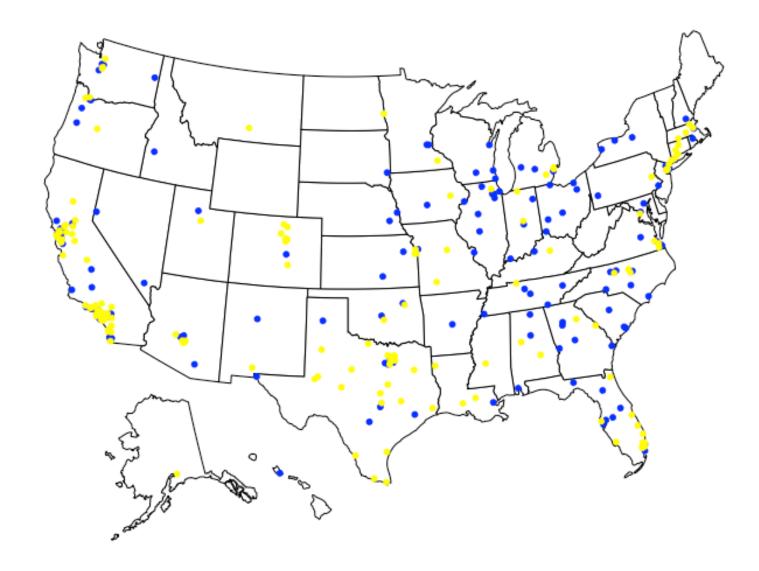
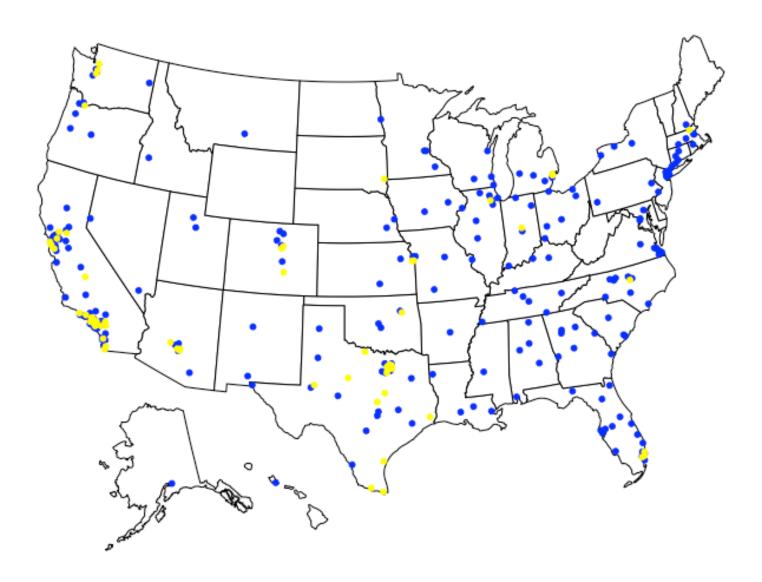
ONLINE APPENDIX FOR

Black Lives Matter Protests and Risk Avoidance:

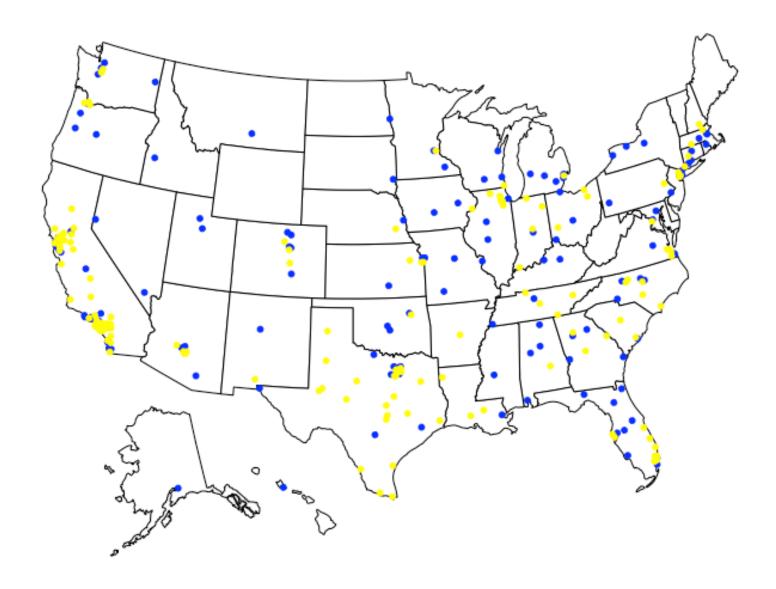
The Case of Civil Unrest During a Pandemic


Dhaval Dave, Andrew Friedson, Kyutaro Matsuzawa, Joseph J. Sabia, Samuel Safford

Appendix Figure 1: Distribution of Large U.S. Cities with and without Protests

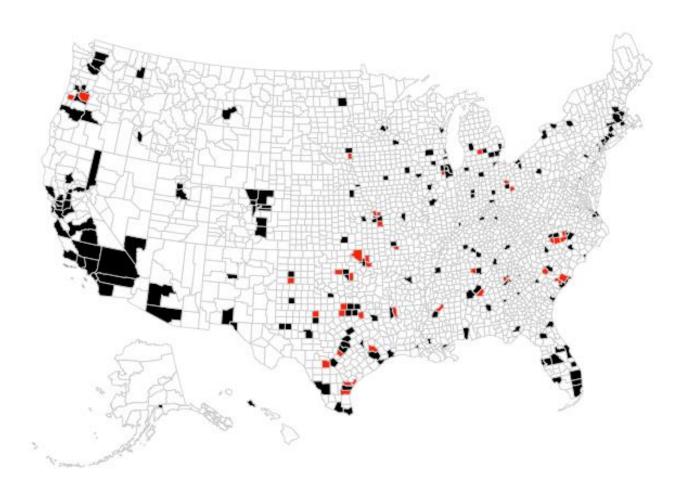

Note: Red dots represent cities with protests. Black dots represent cities with >100,000 population and without a protest.

Appendix Figure 2. Distribution of Large Cities with Protests, by Whether Accompanied by Media Reports of Violence

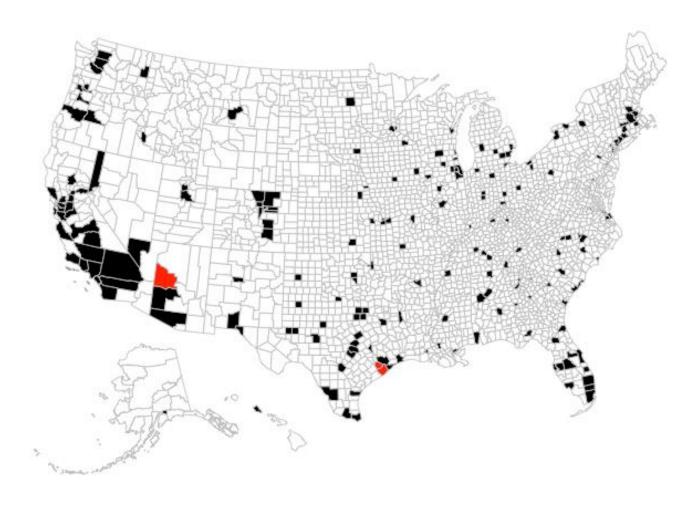


Note: Blue dots represent cities with protests that were accompanied by mainstream media reports of violence. Yellow dots represent cities with protests that were consistently described as peaceful.

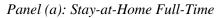
Appendix Figure 3. Distribution of Large Cities with Protests, by Protest Persistence

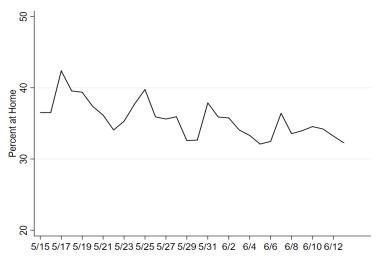


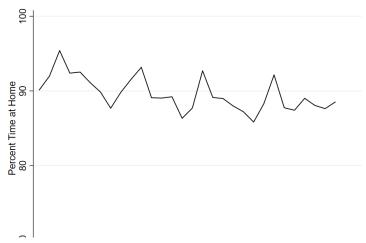
Note: Blue dots represent cities with protests that persisted for three or mor two days.	e days. Yellow dots represent cities with protests that only persisted for one or


Note: Blue dots represent cities with protests with crowds of over 1,000 people. Yellow dots represent cities with protests with crowds of less than 1,000 people.

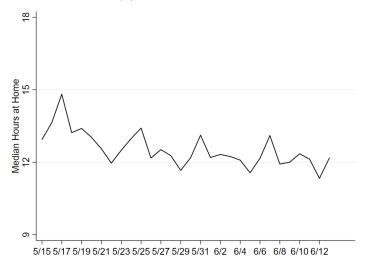
Appendix Figure 5A. Distribution of Counties with at Least One Large Urban Protest


Note: Black shaded counties represent primary counties with a protest. Red shaded counties represent secondary counties with a protest.

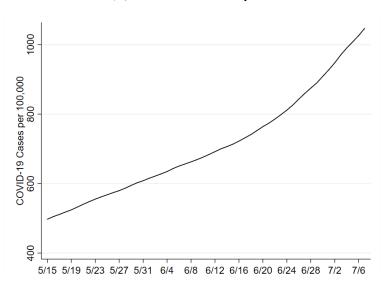

Appendix Figure 5B Distribution of Counties With and Without Protests


Note: Black shaded counties represent primary counties with a protest. Red shaded counties represent primary counties without a protest.

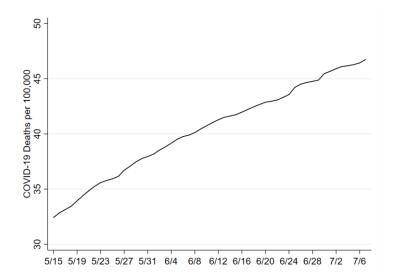
Appendix Figure 6A. Trends in Social Distancing and COVID-19 Cases



Panel (b): Median Percent Time Spent at Home

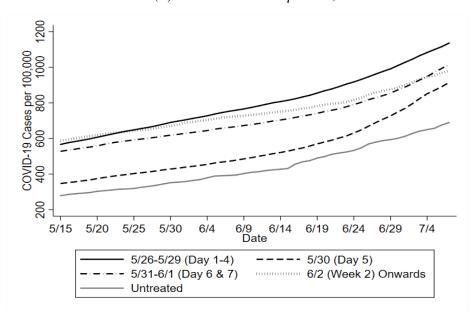


Panel (c): Median Hours at Home

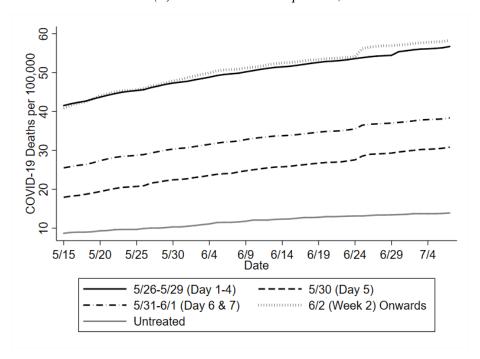


Appendix Figure 6B. Trends in COVID-19 Cases and COVID-19 Deaths

Panel (a): COVID-19 Cases per 100,000

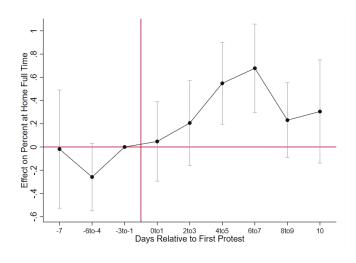


Panel (b): COVID-19 Deaths per 100,000

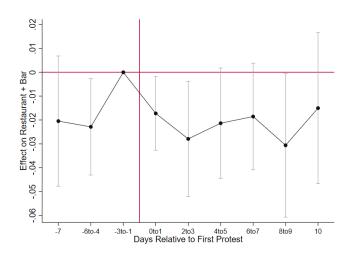


Appendix Figure 6C. Trends in COVID-19 Cases and COVID-19 Deaths, by Timing of BLM Protest Onset

Panel (a): COVID-19 Cases per 100,000

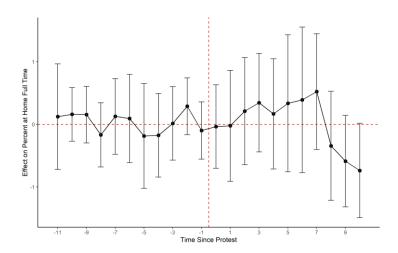


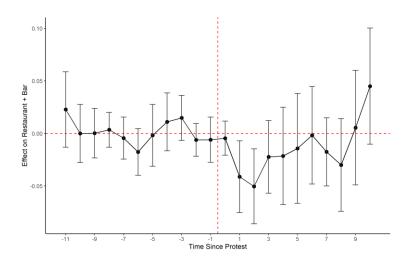
Panel (b): COVID-19 Deaths per 100,000



Appendix Figure 7A. Event-Study Analysis of Social Distancing, Stacked DD Estimates

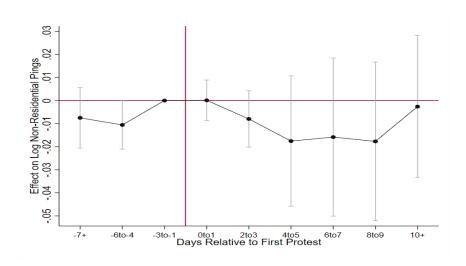
Panel (a): Percent Staying at Home Full-Time

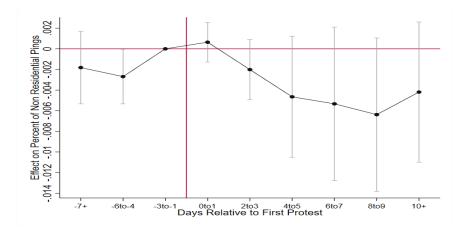

Panel (b): Restaurant & Bar


Notes: Estimate is generated using weighted stacked difference-in-difference. For each stack, the sample is restricted to 7 days before treatment to 10 days post-treatment. For foot-traffic, the outcome is the inverse hyperbolic sine of the measures. All models include county and day fixed effects. State-level controls include: log testing rate, indicator for a SIPO, mask mandate, whether food industry reopened, whether retail store reopened, whether personal or pet care services reopened, and whether entertainment or activity reopened. County-level controls include: average temperature and an indicator for whether any precipitation fell.

Appendix Figure 7B. Event-Study Analysis of Social Distancing, Callaway and Santa'Anna (2021) Estimates

Panel (a): Percent Staying at Home Full-Time

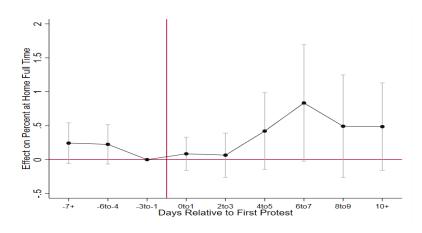

Panel (b): Restaurant & Bar


Notes: Estimate is generated using Callaway Sant'Anna estimates. Control group includes never and not yet adopters. Bar lines represents 95% confidence intervals generated using bootstrapped standard errors.

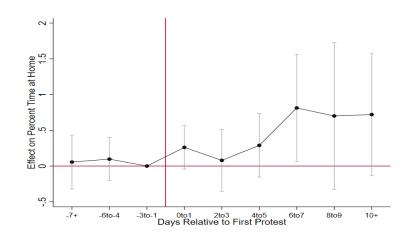
Appendix Figure 8. Event-Study Analysis of BLM Protests and Non-Resident Smartphone Pings

Panel (a): Log (Non-Resident Pings)

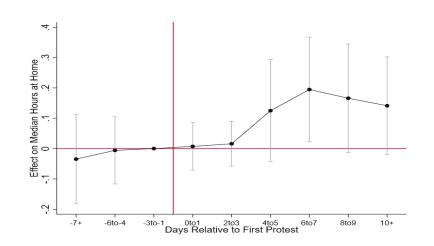
Panel (b): Share of Total Pings that are from Non-Residents

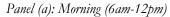


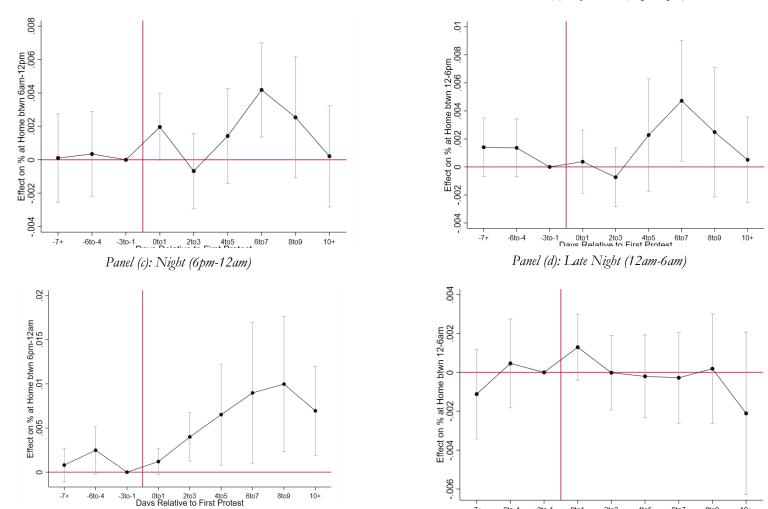
Notes: Estimate is generated using weighted least squares. All models include county and day fixed effects. State-level controls include: log testing rate, indicator for a SIPO, mask mandate, whether food industry reopened, whether retail store reopened,

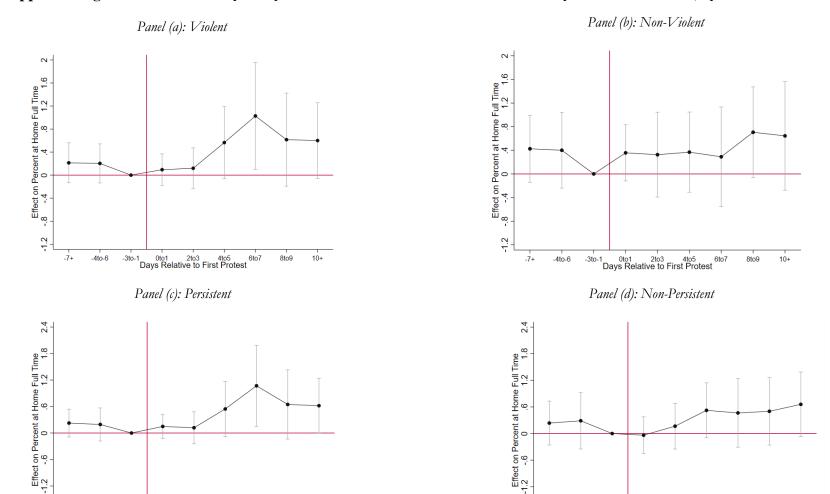

whether personal or pet care services reopened, and whether entertainment or activity reopened. County-level controls include: average temperature and an indicator for whether any precipitation fell.

Appendix Figure 9: Estimated Effect of BLM Protests on Stay-at-Home Behavior, Using Treatment County Clusters


Panel (a): Percent Staying at Home Full-Time


Panel (b): Median Percent of Time at Home


Panel (c): Median Hours Spent at Home


Appendix Figure 10A. Event Study Analysis for Percent of Time at Home, by Timing of Day

Panel (b): Afternoon (12pm-6pm)

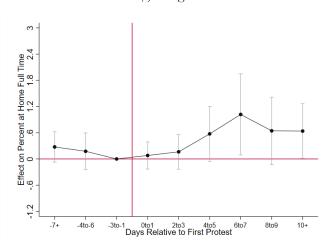
Appendix Figure 10B. Event-Study Analysis of Effect of Urban Protests on Percent Stay at Home Full-Time, by Protest Characteristics

Note. Estimate is generated using weighted least squares. All models include county and day fixed effects. State-level controls include: log testing rate, indicator for a SIPO, mask mandate, whether food industry reopened, whether retail store reopened, whether personal or pet care services reopened, and whether entertainment or activity reopened. County-level controls include: average temperature and an indicator for whether any precipitation fell.

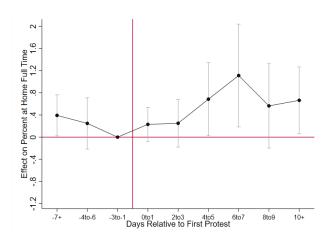
-7+

-4to-6

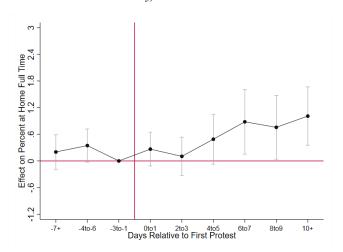
-3to-1 0to1 2to3 4to5 6to7

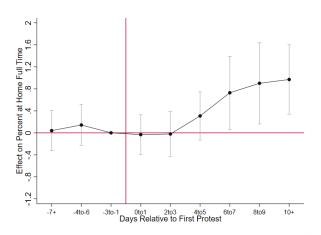

8to9

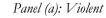
-3to-1 Oto1 2to3 4to5 Days Relative to First Protest

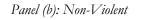

6to7

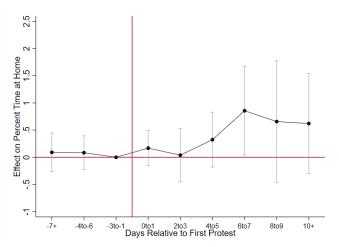
Appendix Figure 10B. Continued

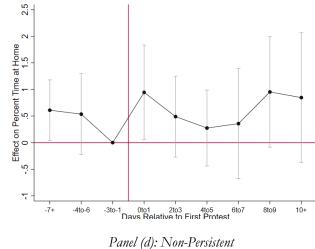

Panel (e): Large Protest

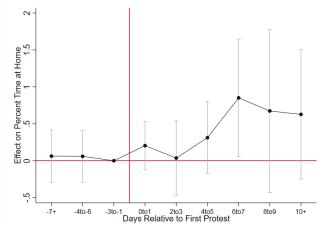

Panel (g): Curfew

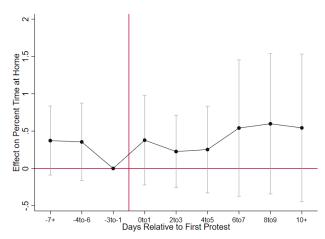

Panel (f): Small Protest



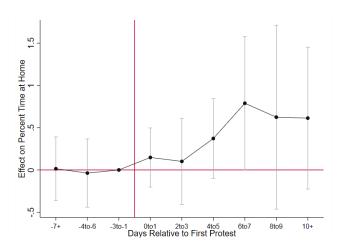

Panel (h): No Curfew

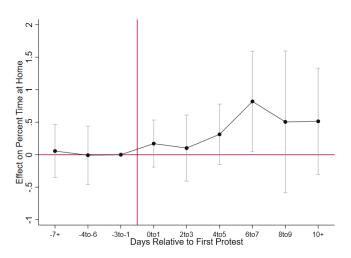

Appendix Figure 10C. Event-Study Analysis of Effect of Urban Protests on % Time Spent at Home, by Protest Characteristics



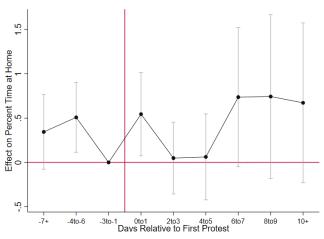


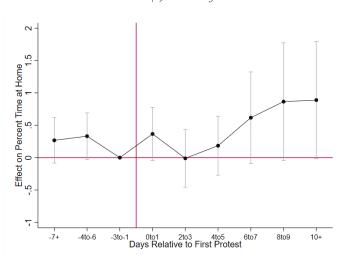
Panel (c): Persistent

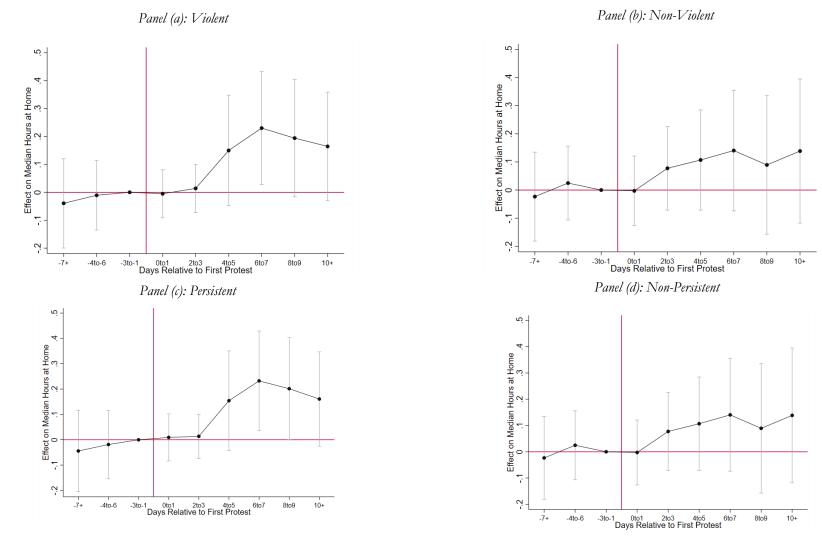


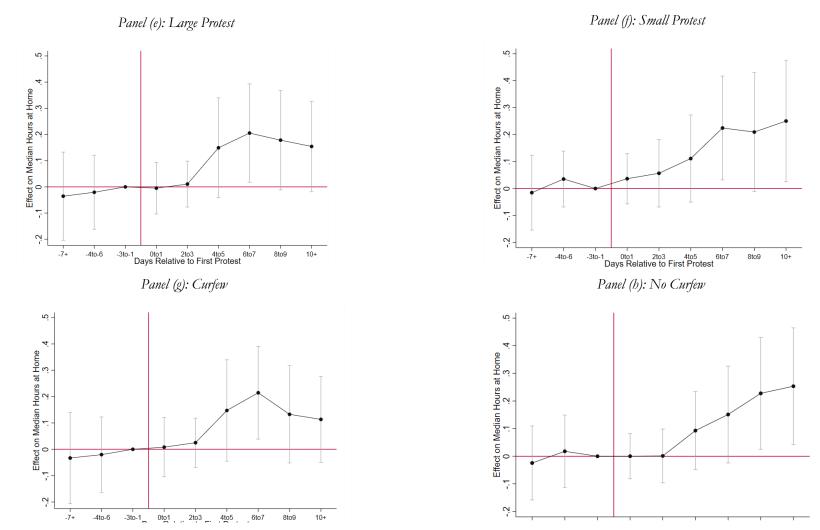


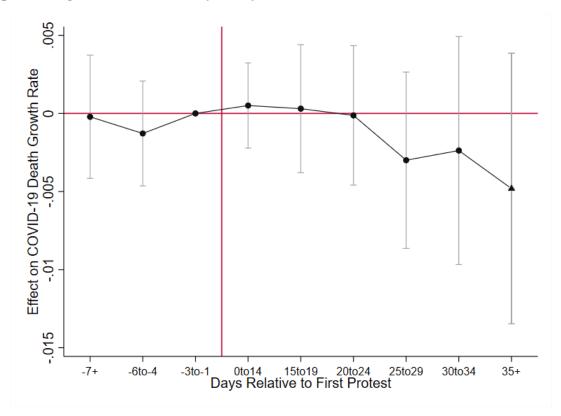
Appendix Figure 10C. Continued

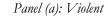

Panel (e): Large Protest

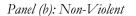

Panel (g): Curfew

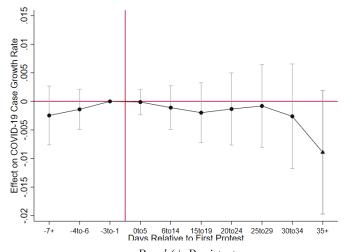

Panel (f): Small Protest

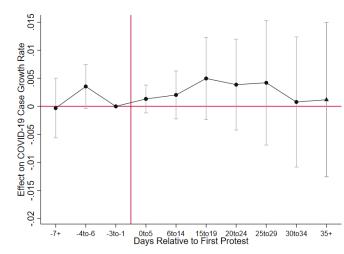

Panel (h): No Curfew

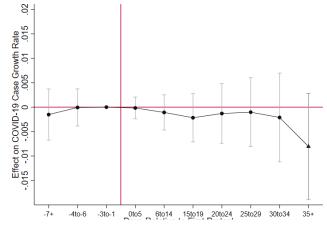

Appendix Figure 10D. Event-Study Analysis of Effect of Urban Protests on Median Hours at Home, by Protest Characteristics

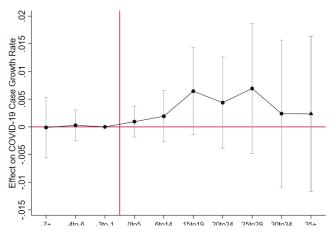

Appendix Figure 10D, Continued



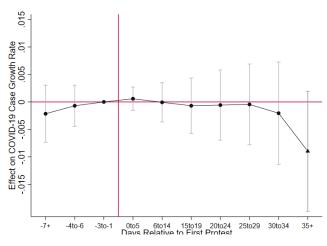

Appendix Figure 11. Event-Study Analysis of Urban Protests on COVID-19 Death Rate

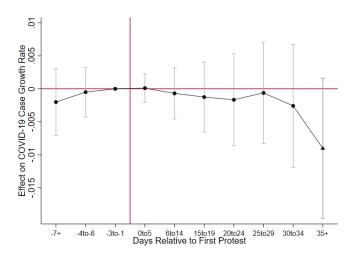

Appendix Figure 12. Event-Study Analysis of Effect of Urban Protests on COVID-19 Case Growth, by Protest Characteristics



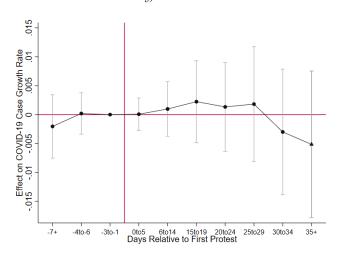


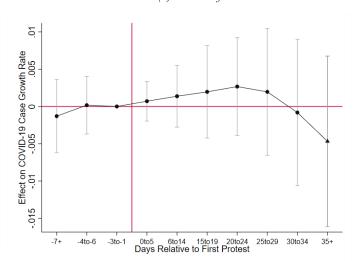
Panel (c): Persistent

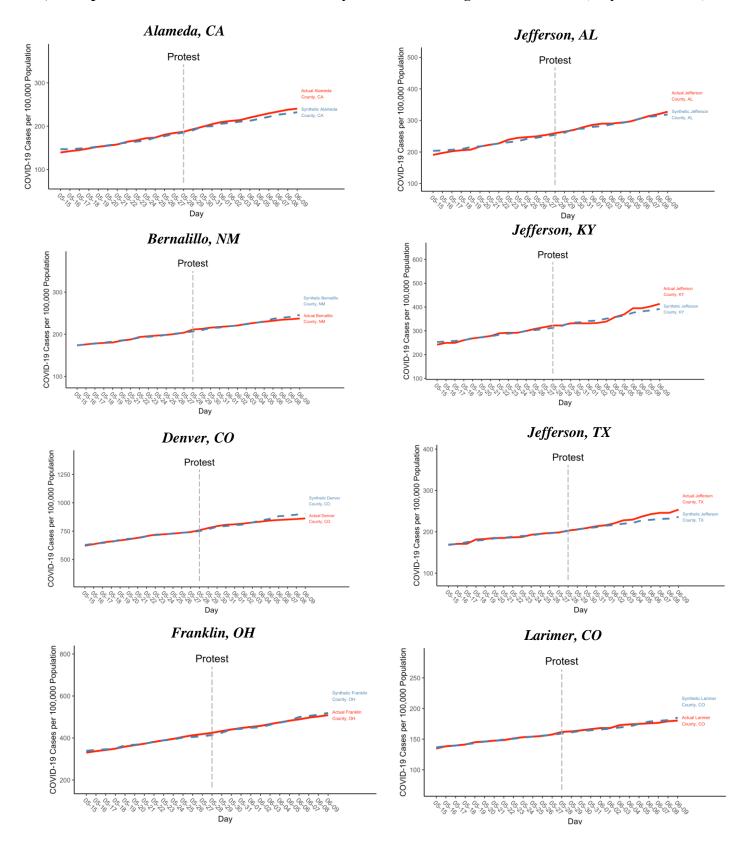

Panel (d): Non-Persistent



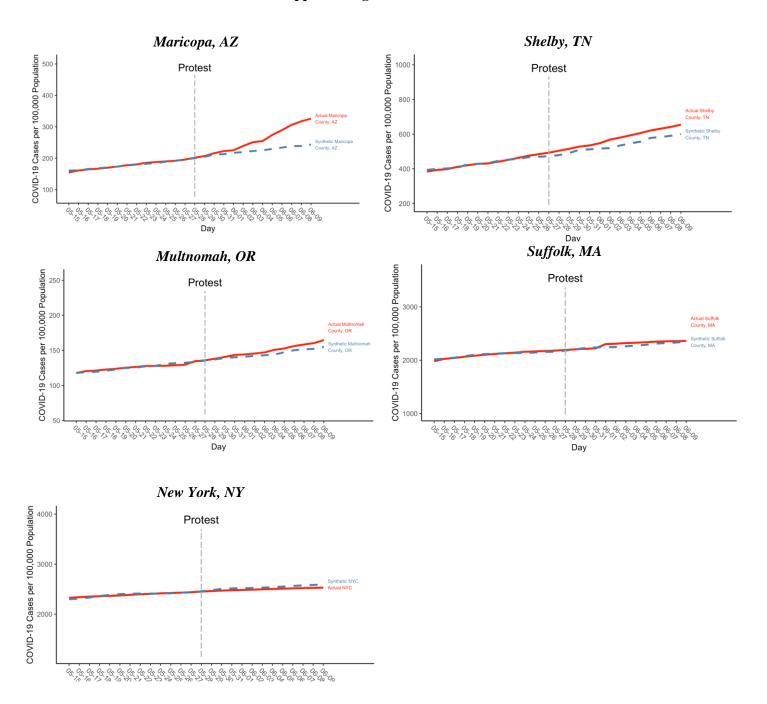
Appendix Figure 12, Continued


Panel (e): Large Protest

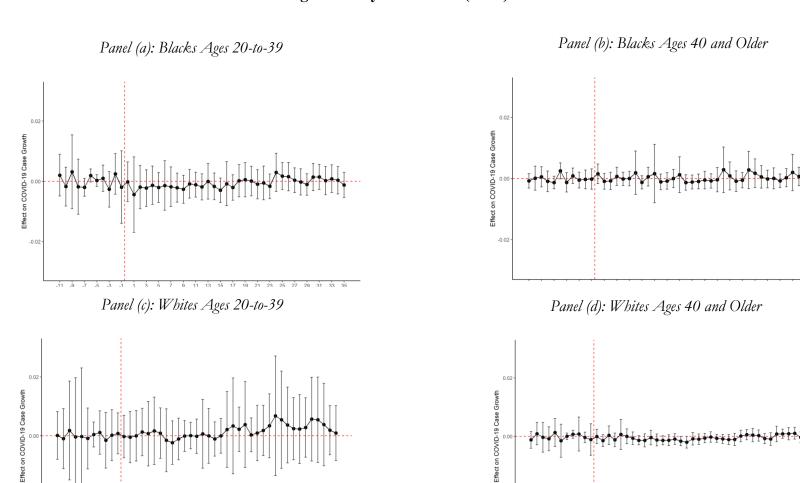

Panel (g): Curfew


Panel (f): Small Protest

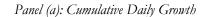
Panel (h): No Curfew



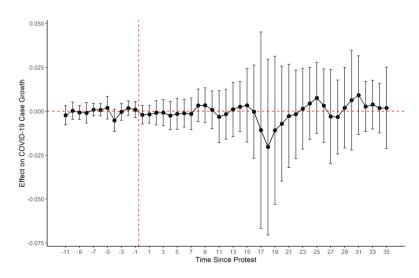
Appendix Figure 13. Synthetic Control Estimates of Effects of Urban Protests on COVID-19 Cases Per 100,000 Population for Selected Counties with Early Protest and Strong Pre-trend Match (May 28 or Earlier)


Note: Estimate is generated using synthetic control method matching on each pre-protest day of COVID-19 cases. counties where no large (100,000 population) city held a protest or where such a protest took place June 4 or later.	The donor pool consists of

Appendix Figure 13. Continued

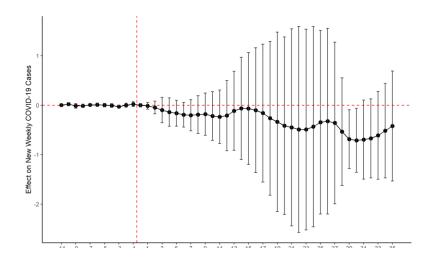

Note: Estimate is generated using synthetic control method matching on each pre-protest day of COVID-19 cases. The donor pool consists of counties where no large (100,000 population) city held a protest or where such a protest took place June 4 or later.

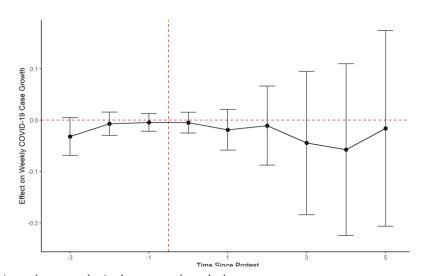
Appendix Figure 14. Event-Study Analysis of BLM Protests and Race-Specific COVID-19 Case Growth, Using Callaway Sant'Anna (2021) Estimates



Notes: Estimate is generated using Callaway Sant'Anna estimates. Control group includes never and not yet adopters. Bar lines represents 95% confidence intervals generated using bootstrapped standard errors.

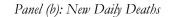
Appendix Figure 15A Robustness of Event-Study Analysis to Use of Alternative Definitions of COVID-19 Cases, Using Callaway and Sant'Anna Estimates

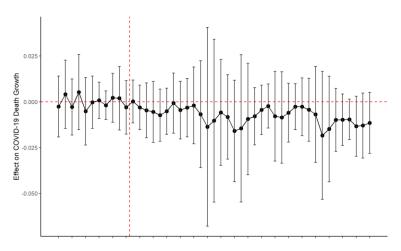



Panel (b): New Daily Cases

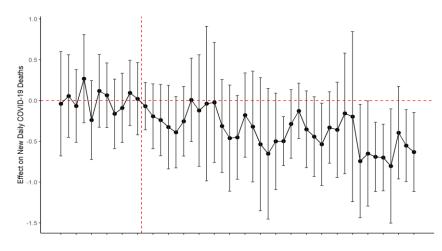
Panel (c): New Seven Day Moving Average Cases

Panel (d): New Weekly Cases

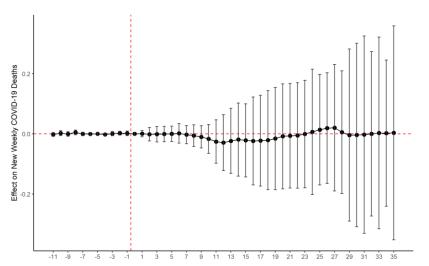


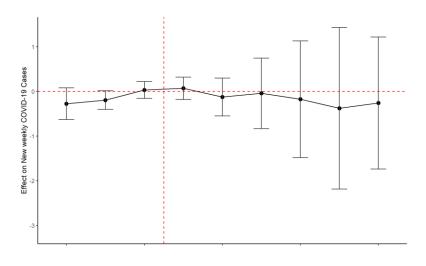


Notes: Control group includes never and not yet adopters. Bar lines represents 95% confidence intervals generated using bootstrapped standard errors.


Appendix Figure 15B: Robustness of Event-Study Analysis to Use of Alternative Definitions of COVID-19 Deaths, Using Callaway and Sant'Anna (2021) Estimates

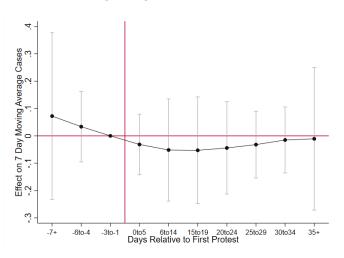
Panel (a): Cumulative Daily Growth

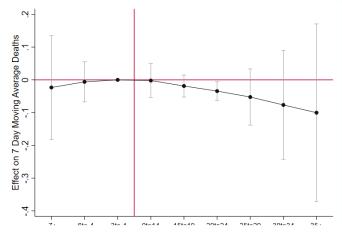




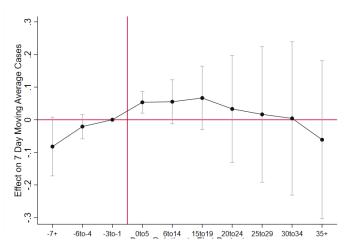
Panel (c): New Seven Day Moving Average Deaths

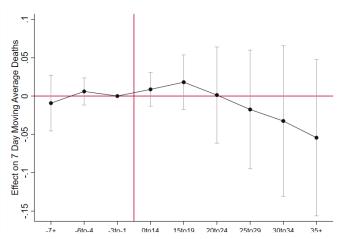
Panel (d): New Weekly Deaths




Notes: Estimate is generated using Callaway Sant'Anna estimates. Control group includes never and not yet adopters. Bar lines represents 95% confidence intervals generated using bootstrapped standard errors.

Appendix Figure 15C. Event-Study Analyses Generated from Poisson Regressions of Cumulative COVID-19 Cases and Deaths


Panel (a): Moving Average COVID-19 Cases: No Controls


Panel (c): Moving Average COVID-19 Deaths: No Controls

Panel (b): Moving Average COVID-19 Cases: Full Controls

Panel (d): Moving Average COVID-19 Deaths: Full Controls

Appendix Table 1A: Detailed Distribution of Counties by Timing of BLM Protest Onset

Date	Number of Counties
May 25 through May 29	66
May 30 th	81
May 31 st through June 1	41
June 2 through June 8	15
June 9 or Later	2
No BLM Protest Over Sample Period	4

Appendix Table 1B. Distribution of Counties by Timing of BLM Protest Onset

	Urbanicit y Rate	Pre-Floyd COVID- 19 Per 100K	Pre-Floyd COVID-19 Case Growth	Median HH Income	Poverty Rate	Unemploym ent Rate	% White
			Pa	nel I: Weight	ted		
Earliest BLM Protest Onset	97.6	421.0	0.021	73958.4	12.8	9.1	70.3
Modal BLM Protest Onset	93.5	428.9	0.018	70000.0	12.2	8.2	75.8
Later Onset / Never Held	94.1	558.2	0.014	84831.5	9.0	7.9	78.8
			Pan	el II: Unweig	hted		
Earliest BLM Protest Onset	95.8	410.0	0.021	70316.8	13.3	8.3	69.5
Modal BLM Protest Onset	90.6	393.3	0.019	65788.5	12.9	7.8	76.4
Later Onset / Never Held	92.0	468.9	0.016	79558.6	9.8	7.8	79.7

Note: Panel I presents descriptive stats, which are weighted by each county's population. Panel II presents descriptive states, which are not weighted.

Appendix Table 2A. Sensitivity of Difference-in-Differences Estimates of Urban Protests on Social Distancing to Spatial Controls

	Stay-at-Home Full-Time	Median Hours at Home
	(1)	(2)
	Panel I: Controls for Count	y-Specific Linear Time Trends
0-1 Days After Protest	0.039	-0.003
	(0.146)	(0.035)
2-3 Days After Protest	0.011	-0.005
	(0.182)	(0.057)
4-7 Days After Protest	0.481	0.112
	(0.442)	(0.134)
8+ Days After Protest	0.161	0.054
	(0.475)	(0.159)
	Panel II: Controls for S	tate-by-Day Fixed Effects
0-1 Days After Protest	0.067	0.000
	(0.101)	(0.025)
2-3 Days After Protest	-0.228	-0.047
	(0.154)	(0.035)
4-7 Days After Protest	0.380	0.118*
	(0.241)	(0.061)
8+ Days After Protest	0.435*	0.137**
	(0.233)	(0.069)
N	6240	6240

Controls Yes Yes

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 3. Sensitivity of Difference-in-Differences Estimates of Urban Protests on Social Distancing to Inclusion of Border Counties

	Stay-at-Home Full-Time	Median Percent Time Spent at Home	Median Hours at Home
	(1)	(2)	(3)
0-1 Days After Protest	0.026	0.358***	0.033
	(0.097)	(0.130)	(0.032)
2-3 Days After Protest	-0.100	-0.052	0.020
	(0.133)	(0.172)	(0.030)
4-7 Days After Protest	0.404	0.437**	0.128*
	(0.273)	(0.215)	(0.070)
8+ Days After Protest	0.117	0.364	0.124*
	(0.253)	(0.343)	(0.068)
N	29430	29430	29430
Controls	Yes	Yes	Yes

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 4A. Heterogeneity in the Effects of BLM Protests on Social Distancing,

Lagging Report of Violence vs Non-Violence

		Social Distancing	3		Foot Traffic	
	% Time Home	Median Hours at Home	% Time at Home	Restaurant + Bar	Retail	Bar
		Panel I: E	xcludes State-Spe	ecific Linear Time	Trends	
Violent	0.199+	0.036	0.301+	-0.018+	-0.008	-0.016
	(0.152)	(0.036)	(0.198)	(0.012)	(0.006)	(0.039)
Non-Violent	0.109	0.025	0.204	-0.009	0.003	0.019
	(0.112)	(0.029)	(0.143)	(0.007)	(0.005)	(0.025)
	6240	6240	6240	6240	6240	6240
		Panel II: I	ncludes State-Sp	ecific Linear Time	Trends	
Violent	0.224	0.040	0.196	-0.048***	-0.033***	-0.036**
	(0.192)	(0.054)	(0.241)	(0.014)	(0.008)	(0.015)
Non-Violent	0.057	0.000	0.186	-0.010	0.003	-0.006
	(0.127)	(0.032)	(0.152)	(0.007)	(0.005)	(0.006)
	6240	6240	6240	6240	6240	6240

⁺ Significant at the 10% level, * Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 4B. Estimated Effect of BLM Protests on Foot Traffic at Restaurants and Bars, by Time-Invariant Measure of Whether Any Protest Occurred at Night

	Restaura	nt + Bars	Ва	ars
	(1)		(2	2)
	T _c =1	T _c =0	T _c =1	$T_c=0$
	Cit	ies with Night F	Protests $(T_c=1)$	VS.
	Cit	ies without Nig	ht Protests (T_c =	=0)
0-1 Days After Protest	-0.005	-0.012	0.018	0.070
	(0.007)	(0.010)	(0.024)	(0.055)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.5	55]	[.3:	30]
2-3 Days After Protest	-0.028**	-0.010	-0.038	0.029
	(0.011)	(0.014)	(0.039)	(0.058)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.1	44]	[.1]	75]
4-7 Days After Protest	-0.036	-0.018	-0.034	0.013
	(0.025)	(0.023)	(0.055)	(0.081)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.1	36]	[.4	56]
8+ Days After Protest	-0.043*	-0.035	-0.052	-0.011
	(0.025)	(0.028)	(0.072)	(0.102)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.5	61]	[.60	01]

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 4C. Estimated Effect of BLM Protests on Restaurant and Bar Foot Traffic, Using Time-Varying Measure of Timing of BLM Protest

	(1)	(2)
	Restaurant + Bars	Bars
AM	0.003	0.001
	(0.006)	(0.021)
PM	-0.005	-0.033*
	(0.005)	(0.018)
Night	-0.019***	-0.036*
	(0.006)	(0.019)
	6240	6240

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 5. Heterogeneity in the Effects of Urban Protests on Social Distancing

	Stay-at	-Home	Median Per	cent Time	Media	n Hours
	Full-Time		Spent at	Spent at Home		t Home
	(1	1)	(2	2)	(.	3)
	T _c =1	T _c =0	T _c =1	T _c =0	T _c =1	T _c =0
	Po	unel I: Cities	with Protest on	May 28 or B	Vefore $(T_c=1)$	vs.
		Cities	with Protest A	fter May 28 ($T_c=0$	
0-1 Days After Protest	0.404**	-0.012	0.624***	0.137	0.038	0.009
	(0.189)	(0.154)	(0.235)	(0.159)	(0.052)	(0.035)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.07	' 5]*	[.06	9]*	[.555]	
2-3 Days After Protest	0.137	0.090	0.543	-0.129	0.101	-0.001
	(0.406)	(0.184)	(0.488)	(0.164)	(0.109)	(0.042)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.9	14]	[.193]		[.404]	
4-7 Days After Protest	1.259***	0.262	0.962***	0.055	0.274**	0.075
	(0.423)	(0.171)	(0.266)	(0.201)	(0.114)	(0.062)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.012	2]**	[.001]***		[.016]	
8+ Days After Protest	0.354	0.160	0.600**	0.060	0.106*	0.085
	(0.373)	(0.237)	(0.269)	(0.297)	(0.062)	(0.082)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.6:	[.657]		[.024]		08]
		Panel II: C	ities with Popu	elation ≥ 5001	$K(T_c=1) vs.$	
			s with Populati		•	
0-1 Days After Protest	0.089	0.068	0.264	0.303*	-0.008	0.022
	(0.195)	(0.145)	(0.206)	(0.169)	(0.039)	(0.043)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.92	26]	[.86	52]	[.5	15]

	Stay-at-Home		Median Per	Median Percent Time		n Hours
	Full-	Time	Spent at	Spent at Home		t Home
		1)	(2	(2)		3)
	T _c =1	T _c =0	$T_c=1$	T _c =0	T _c =1	T _c =0
2-3 Days After Protest	0.150	0.049	0.377	-0.010	-0.010	0.075
	(0.322)	(0.189)	(0.349)	(0.183)	(0.064)	(0.052)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.7	79]	[.233]		[.208]	
4-7 Days After Protest	0.763**	0.438*	0.888***	0.103	0.229**	0.138*
	(0.383)	(0.225)	(0.259)	(0.211)	(0.113)	(0.078)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.2	18]	000.]]***	[.119]	
8+ Days After Protest	0.294	0.433	0.537	0.186	0.149*	0.155
	(0.280)	(0.278)	(0.340)	(0.370)	(0.078)	(0.101)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.5	99]	[.045]**		[.933]	

		: Counties with ounties with <			,	,
0-1 Days After Protest	0.196	0.018	0.357*	0.218	0.003	0.001
	(0.194)	(0.126)	(0.184)	(0.159)	(0.047)	(0.037)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.3	73]	[.4	43]	[.9	66]
2-3 Days After Protest	-0.032	0.187	-0.282	0.364	0.028	0.006
	(0.182)	(0.228)	(0.199)	(0.245)	(0.052)	(0.049)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.3	90]	[.00.]	3]***	[.6]	78]
4-7 Days After Protest	0.340	0.761**	-0.179	0.802***	0.147*	0.150
	(0.251)	(0.342)	(0.232)	(0.247)	(0.079)	(0.104)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.05	54]*	000.]	0]***	[.94	48]
8+ Days After Protest	0.617**	0.308	0.240	0.477	0.231**	0.101

	Stay-at-Home		Median Percent Time		Median Hours	
	Full-Time		Spent at Home		Spent at Home	
	(1)		(2)		(3)	
	T _c =1	T _c =0	$T_c=1$	T _c =0	$T_c=1$	T _c =0
•	(0.312)	(0.269)	(0.392)	(0.368)	(0.103)	(0.088)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.122]		[.142]		[.008]***	

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 6. Estimated Effect of Urban Protests on Social Distancing, by Pre-George Floyd Death (May 10-24) County-Level COVID-19 Growth Rate

	(1)	(2)	(3)
	Lower 3 rd Pre-Floyd Case Growth	Middle 3 rd Pre-Floyd Case Growth	Upper 3 rd Pre-Floyd Case Growth
	Panel I: I	Percent Staying at Home F	Full-Time
0 to 1 Days After	0.211	-0.161	0.161
	(0.284)	(0.262)	(0.188)
2 to 3 Days After	-0.104	0.056	0.303
	(0.358)	(0.217)	(0.248)
4 to 7 Days After	0.301	0.138	1.470**
	(0.285)	(0.242)	(0.616)
8+ Days After	0.357	-0.138	1.439**
	(0.377)	(0.354)	(0.714)
	Panel II:	Median Percent of Time of	at Home
0 to 1 Days After	0.432	0.214	0.023
	(0.305)	(0.195)	(0.253)
2 to 3 Days After	-0.461	-0.043	0.440
	(0.296)	(0.168)	(0.400)
4 to 7 Days After	0.207	0.278	0.812
	(0.313)	(0.251)	(0.530)
8+ Days After	0.266	-0.146	1.353
	(0.488)	(0.265)	(0.937)
	Pan	el III: Median Hours at He	оте
0 to 1 Days After	0.042	0.009	0.013
	(0.085)	(0.048)	(0.056)

2 to 3 Days After	-0.134*	-0.000	0.161**
	(0.078)	(0.056)	(0.076)
4 to 7 Days After	0.004	0.093	0.398**
	(0.062)	(0.067)	(0.200)
8+ Days After	-0.048	0.068	0.412*
	(0.091)	(0.074)	(0.228)
N	6240	6240	6240

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 7. Heterogeneity in the Effects of Urban Protests on Foot Traffic

	Stay-a	Stay-at-Home		Median Percent Time		n Hours	
	Full-Time		Spent at Home		Spent at Home		
	((1)	(2	2)	(3)	
	T _c =1	T _c =0	T _c =1	T _c =0	T _c =1	T _c =0	
		Panel I: C	Cities with Vio	lent Protests ($T_c=1)$ vs.		
		Citie	s with Peacef	ul Protests (T	c=0)		
0-1 Days After Protest	-0.006	-0.018	0.010	-0.001	0.007	-0.019	
	(0.007)	(0.015)	(0.007)	(0.011)	(0.007)	(0.022)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.3	[.359]		[.425]		[.218]	
2-3 Days After Protest	-0.026**	-0.054***	-0.019**	-0.035**	-0.008	-0.031	
	(0.012)	(0.019)	(0.008)	(0.016)	(0.015)	(0.028)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.04	1]**	[.20	63]	[.2	71]	
4-7 Days After Protest	-0.041	-0.032	-0.030	-0.025	-0.038	-0.037	
	(0.026)	(0.026)	(0.021)	(0.021)	(0.035)	(0.037)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.4	181]	[.58	88]	[.9	44]	
8+ Days After Protest	-0.050*	-0.062*	-0.034*	-0.048**	-0.038	-0.061	
	(0.027)	(0.031)	(0.021)	(0.024)	(0.038)	(0.043)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.5	517]	[.20	06]	[.1	64]	
		Panel II: Ci	ties with Pers	istent Protests	$s(T_c=1) vs.$		
				ary Protests (Z			
0-1 Days After Protest	-0.008	-0.002	0.008	0.009	0.003	0.006	
	(0.008)	(0.012)	(0.008)	(0.009)	(0.008)	(0.016)	

	Stay-at-Home		Median Per	Median Percent Time		n Hours	
	Full	-Time	Spent a	t Home	Spent at Home		
	(1)	(2)		(3)		
	T _c =1	T _c =0	$T_c=1$	T _c =0	$T_c=1$	T _c =0	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.671]		[.95	57]	[.8.	57]	
2-3 Days After Protest	-0.026**	-0.039**	-0.019**	-0.025*	-0.010	-0.011	
	(0.012)	(0.019)	(0.009)	(0.013)	(0.015)	(0.024)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.3	[.364]		[.615]		[.974]	
4-7 Days After Protest	-0.040	-0.032	-0.030	-0.025	-0.039	-0.022	
	(0.026)	(0.024)	(0.021)	(0.020)	(0.035)	(0.035)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.5	[.529]		[.618]		50]	
8+ Days After Protest	-0.049*	-0.049*	-0.034*	-0.033	-0.036	-0.026	
	(0.026)	(0.028)	(0.020)	(0.023)	(0.037)	(0.042)	
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.9	80]	[.96	56]	[.6	13]	

Panel III: Protest Cities with Size >1,000 ($T_c=1$) vs.

Protest Cities with Size <1,000 ($T_c=0$)

0-1 Days After Protest	-0.006	-0.006	0.011	0.004	0.007	-0.002
	(0.008)	(0.009)	(0.007)	(0.008)	(0.008)	(0.012)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[1.0	000]	[.4]	74]	[.4	67]
2-3 Days After Protest	-0.026**	-0.030**	-0.017**	-0.026**	-0.005	-0.022
	(0.012)	(0.015)	(0.009)	(0.011)	(0.015)	(0.020)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.7	04]	[.42	26]	[.2	35]
4-7 Days After Protest	-0.037	-0.038*	-0.028	-0.033*	-0.036	-0.040
	(0.026)	(0.022)	(0.021)	(0.019)	(0.035)	(0.032)

	Stay-at-Home Full-Time		Median Pe	rcent Time	Media	n Hours
			Spent a	t Home	Spent at Home	
	(1)	(2	2)	(3)	
	T _c =1	T _c =0	T _c =1	T _c =0	T _c =1	T _c =0
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	8.]	89]	[.59	97]	[.7	18]
8+ Days After Protest	-0.046*	-0.059**	-0.032	-0.045**	-0.034	-0.051
	(0.026)	(0.026)	(0.020)	(0.021)	(0.037)	(0.039)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.1	69]	[.07	' 5]*	[.1	93]
	Panel IV	: Cities with a	ı Curfew (T_c = T_c	!) vs. Cities w	ithout a Curfe	ew (T _c =0)
0-1 Days After Protest	-0.004	-0.015	0.013	0.000	0.010	-0.008
	(0.009)	(0.010)	(0.008)	(0.007)	(0.008)	(0.011)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.2	.77]	[.14	47]	[.1	12]
2-3 Days After Protest	-0.031**	-0.025*	-0.024***	-0.012	-0.014	-0.002
	(0.013)	(0.013)	(0.009)	(0.010)	(0.015)	(0.018)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.6	608]	[.237]		[.370]	
4-7 Days After Protest	-0.042	-0.031	-0.030	-0.024	-0.038	-0.028
	(0.027)	(0.021)	(0.021)	(0.017)	(0.036)	(0.030)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.3	51]	[.496]		[.495]	
8+ Days After Protest	-0.045*	-0.053**	-0.027	-0.044**	-0.027	-0.050
	(0.026)	(0.026)	(0.019)	(0.021)	(0.036)	(0.039)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.5	[04]	[.022	2]**	[.05	51]*

Stay-at-Home		Median Percent Time		Median Hours	
Full-Time		Spent at Home		Spent at Home	
(1)		(2)		(3)
T _c =1	T _c =0	$T_c=1$	T _c =0	T _c =1	T _c =0

Panel V: States with a Mask Mandate $(T_c=1)$ vs. States without a Mask Mandate $(T_c=0)$

			Manaaie	$e(I_c-0)$		
0-1 Days After Protest	-0.023**	-0.003	0.008	0.008	-0.008	0.007
	(0.011)	(0.008)	(0.008)	(0.007)	(0.013)	(0.008)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.1	02]	[.9	61]	[.2	64]
2-3 Days After Protest	-0.048**	-0.024**	-0.020	0.021***	-0.029	-0.005
	(0.019)	(0.012)	(0.019)	(0.008)	(0.023)	(0.015)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.1	75]	[.93	36]	[.2	57]
4-7 Days After Protest	-0.024	-0.043*	0.001	-0.037*	-0.030	-0.039
	(0.024)	(0.026)	(0.020)	(0.020)	(0.033)	(0.035)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.1	90]	[.004	.]***	[.6	21]
8+ Days After Protest	-0.045	-0.051*	-0.010	-0.038*	-0.034	-0.038
	(0.030)	(0.026)	(0.022)	(0.020)	(0.043)	(0.037)
P-Value for $\beta_{Tc=1} = \beta_{Tc=0}$	[.7	39]	[.01	9]**	8.]	81]
N	62	240	62	40	62	40
Mean of DV	35.	572	89	586	12.	533

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Notes: Estimate is generated using weighted least squares. The outcome is inverse hyperbolic sine of the foot-traffic measures. All models include county and day fixed effects. State-level controls include: log testing rate, indicator for a SIPO, mask mandate, whether food industry reopened, whether retail store reopened, whether personal or pet care

services reopened, and whether entertainment or activity reopened. County-level controls include: average temperature and an indicator for whether any precipitation fell. Standard errors, clustered at the county-level, are reported inside the parenthesis.

Appendix Table 8. Sensitivity of Difference-in-Differences Estimates of Urban Protests on COVID-19 Case Growth to Inclusion of Border Counties

	(1)
0-5 Days After Protest	0.0012
•	(0.0009)
6-14 Days After Protest	0.0017
•	(0.0014)
15-19 Days After Protest	0.0012
•	(0.0019)
20-24 Days After Protest	0.0003
•	(0.0023)
25-29 Days After Protest	-0.0002
	(0.0028)
30-34 Days After Protest	-0.0034
	(0.0035)
35+ Days After Protest	-0.0090
	(0.0061)
N	52842

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 9. Sensitivity of Difference-in-Differences Estimates of Urban Protests on Cases to Inclusion of Spatial Control

	(1)	(2)		
	Panel I: COVID-19 Case Growth Rate			
0-5 Days After Protest	-0.0003	0.0021		
•	(0.0008)	(0.0013)		
6-14 Days After Protest	-0.0009	0.0023		
•	(0.0014)	(0.0023)		
15-19 Days After Protest	-0.0011	0.0036		
	(0.0021)	(0.0034)		
20-24 Days After Protest	-0.0010	0.0039		
	(0.0027)	(0.0040)		
25-29 Days After Protest	0.0001	0.0030		
	(0.0029)	(0.0050)		
30-34 Days After Protest	-0.0005	0.0023		
•	(0.0036)	(0.0058)		
35+ Days After Protest	-0.0003	-0.0020		
•	(0.0008)	(0.0064)		
	Panel II: COVID-19	Death Growth Rate		
0-14 Days After Protest	0.000	0.002		
·	(0.001)	(0.002)		
15-19 Days After Protest	0.000	0.003		
•	(0.002)	(0.003)		
20-24 Days After Protest	0.000	0.003		
•	(0.002)	(0.003)		
25-29 Days After Protest	-0.002	0.001		
	(0.003)	(0.004)		
30-34 Days After Protest	-0.001	0.003		
	(0.004)	(0.005)		
35+ Days After Protest	-0.001	0.000		
	(0.004)	(0.005)		
N	11232	11232		
State-Specific Linear Time Trend	Yes	No		
State-by-Day Fixed Effects	No	Yes		

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Notes: Estimate is generated using weighted least squares. All models include county and day fixed effects, as well as county-specific linear time trend. State-level controls include: log testing rate, indicator for a SIPO, mask mandate, whether food industry reopened, whether retail store reopened, whether personal or pet care services reopened, and

whether entertainment or activity reopened. County-level controls include: average temperature and an indicator for whether any precipitation fell. Standard errors, clustered at the county-level, are reported inside the parentheses.

Appendix Table 10. Heterogeneity in the Effects of Urban Protests on Case Growth Rate

(1) T _c =1	(2) T _c =0		
Panel I: Cities with Protest on Mo	ay 28 or Before $(T_c=1)$ vs. Cities with		
	0.0004		
	(0.0013)		
` /	0.0001		
	(0.0019)		
` /	-0.0003		
	(0.0026)		
` ,	0.0020)		
	(0.0029)		
` /	0.0029)		
` /	(0.0038) 0.0013		
` /	(0.0042)		
	-0.0023		
(0.0054) (0.0045) [.398]			
<u>*</u>	$ion \ge 500K (T_c=1) \text{ vs. Cities with}$ < $500K (T_c=0)$		
0.0007	0.0010		
(0.0017)	(0.0011)		
0.0012	0.0009		
(0.0022)	(0.0017)		
-0.0001	0.0018		
(0.0027)	(0.0025)		
` /	0.0005		
(0.0038)	(0.0029)		
` /	0.0029		
	(0.0040)		
-0.0008	0.0004		
(0.0045)	((),()()46)		
(0.0045) -0.0074	(0.0046) -0.0030		
(0.0045) -0.0074 (0.0051)	(0.0046) -0.0030 (0.0053)		
	Panel I: Cities with Protest on Manager Protest After 0.0006 (0.0020) 0.0000 (0.0035) -0.0013 (0.0040) -0.0034 (0.0060) -0.0037 (0.0041) -0.0038 (0.0052) -0.0090* (0.0054) [Interpretation of the production of t		

(1)	(2)
(1)	(2)
Т –1	T -0
1 c-1	1 c-U

Panel III: Counties with \geq Mean Share of Non-Hispanic Whites $(T_c=1)$ vs. Counties with < Mean Share of Non-Hispanic Whites $(T_c=0)$

	vs. Counties with $<$ Mean Share of Non-Hispanic whites $(T_c - 0)$		
0-5 Days After Protest	0.0006	0.0019	
	(0.0013)	(0.0014)	
6-14 Days After Protest	0.0010	0.0025	
-	(0.0021)	(0.0018)	
15-19 Days After Protest	-0.0003	0.0034	
•	(0.0028)	(0.0025)	
20-24 Days After Protest	-0.0011	0.0032	
•	(0.0033)	(0.0032)	
25-29 Days After Protest	-0.0022	0.0039	
•	(0.0041)	(0.0038)	
30-34 Days After Protest	-0.0048	0.0008	
•	(0.0049)	(0.0047)	
35+ Days After Protest	-0.0091	-0.0063	
•	(0.0058)	(0.0053)	
P-Value for Joint Test	[.113]		
N	11232		
Mean of DV	0.0212		
Wiedli of B v	0.	0212	

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level

Appendix Table 11. Estimated Effect of Urban Protests on COVID-19 Case Growth Rate, by Pre-George Floyd Death (May 10-24) County-Level COVID-19 Growth Rate

	(1)	(2)	(3)
	Lower 3 rd	Middle 3 rd	Upper 3 rd
	Pre-Floyd Case Growth	Pre-Floyd Case Growth	Pre-Floyd Case Growth
0 to 5 Days After	-0.0004	0.0011	-0.0008
	(0.0019)	(0.0015)	(0.0024)
6 to 14 Days After	-0.0015	0.0016	-0.0014
	(0.0031)	(0.0024)	(0.0038)
15 to 19 Days After	-0.0021	0.0024	0.0000
	(0.0045)	(0.0033)	(0.0049)
20 to 24 Days After	-0.0054	0.0031	0.0026
	(0.0053)	(0.0029)	(0.0060)
25 to 29 Days After	-0.0055	0.0063	0.0018
	(0.0060)	(0.0039)	(0.0072)
30 to 34 Days After	-0.0055	0.0044	-0.0020
	(0.0063)	(0.0041)	(0.0085)
35+ Days After	-0.0073	0.0025	-0.0117
	(0.0065)	(0.0049)	(0.0080)
N	11232	11232	11232

^{*} Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level